Recall:

Theorem/Definition Let L/K be a field extension of finite degree. The following are equivalent:

- (1) We have # Aut(L/K) = [L : K].
- (2) The fixed field of Aut(L/K) is K.
- (3) For every $\theta \in L$, the minimal polynomial of θ over K is separable and splits in L.
- (4) L is the splitting field of a separable polynomial $f(x) \in K[x]$.

A field extension L/K which satisfies these equivalent definitions is called *Galois*.

Given a subfield F with $K \subseteq F \subseteq L$, we write Stab(F) for the subgroup of G fixing F; given a subgroup H of Gal(L/K), we write Fix(H) for the subfield of L fixed by H. Our next main goal will be to show:

The fundamental Theorem of Galois theory Let L/K be a Galois extension with Galois group G. The maps Stab and Fix are inverse bijections between the set of subgroups of G and the set of intermediate fields F with $K \subseteq F \subseteq L$. Moreover, if $F_1 \subseteq F_2$, then $\operatorname{Stab}(F_1) \supseteq \operatorname{Stab}(F_2)$ and $[\operatorname{Stab}(F_1) : \operatorname{Stab}(F_2)] = [F_2 : F_1]$. If $H_1 \subseteq H_2$ then $\operatorname{Fix}(H_1) \supseteq \operatorname{Fix}(H_2)$ and $[\operatorname{Fix}(H_1) : \operatorname{Fix}(H_2)] = [H_2 : H_1]$.

We start by proving some basic results about Fix and Stab.

Problem E.1. (1) Show that, if $F_1 \subseteq F_2$ then $Stab(F_1) \supseteq Stab(F_2)$.

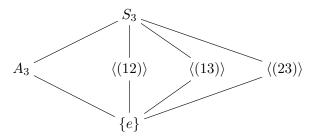
(2) Show that, if $H_1 \subseteq H_2$ then $Fix(H_1) \supseteq Fix(H_2)$.

Problem E.2. (1) Show that $Stab(Fix(H)) \supseteq H$.

(2) Show that $Fix(Stab(F)) \supset F$.

The Fundamental Theorem tells us that both of the \supseteq 's in Problem E.2 are actually equality, but we don't know that yet.

We now give examples. Here is a table of the subgroups of S_3 :



Problem E.3. Let $L = \mathbb{Q}(x_1, x_2, x_3)$, let S_3 act on L by permuting the variables and let $K = \text{Fix}(S_3)$. Describe the subfield of L fixed by each of the subgroups of S_3 .

Problem E.4. Let L be the splitting field of x^3-2 over $\mathbb Q$. We number the roots of x^3-2 as $\sqrt[3]{2}$, $\omega\sqrt[3]{2}$ and $\omega^2\sqrt[3]{2}$, where ω is a primitive cube root of 1. Described the subfield of L fixed by each of the subgroups of S_3 .

Now we prove the theorem!

Problem E.5. Both parts of this problem are things you already did, your job is just to remember when you did them.

- (1) Let L/K be a Galois extension. Let F be a field with $K \subseteq F \subseteq L$. Show that $|\operatorname{Stab}(F)| = [L:F]$.
- (2) Let L/K be a Galois extension. Let H be a subgroup of Gal(L/F). Show that [L : Fix(H)] = |H|.

Problem E.6. Prove that the maps Fix and Stab in the Fundamental Theorem are mutually inverse.

Problem E.7. Check the remaining claims of the Fundamental Theorem.