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Let G be a finite group. Suppose we have two chains of subgroups

0 = G0 ( G1 ( G2 ( · · · ( Gr = G

and

0 = H0 ( H1 ( H2 ( · · · ( Hs = G

so that Gi is normal in Gi+1, with Gi+1/Gi simple and Hj is normal in Hj+1, with Hj+1/Hj simple.

Theorem (Jordan-Holder): In the above setting, we have r = s, and the list of quotients
(G1/G0, G2/G1, . . . , Gr/Gr−1) is a rearrangement of the list of quotients (H1/H0, H2/H1, . . . ,Hs/Hs−1).

The set up of the theorem is easy to achieve:

Theorem 2: Let G be any finite group. Then we can find a chain of normal subgroups

0 = G0 ( G1 ( G2 ( · · · ( Gr = G

so that Gi is normal in Gi+1 and Gi+1/Gi is simple.

Proof: Let r be the largest possible number so that there is a chain

0 = G0 ( G1 ( G2 ( · · · ( Gr = G

with Gi is normal in Gi+1. We can always take r = 1, and (G0, G1) = ({1}, G), so such an r exists
and, since G is finite, there is a largest such r.

We claim that Gi+1/Gi is simple. If not, let H be a normal subgroup of Gi/Gi+1 and let π be
the projection map Gi → Gi/Gi+1. Then π−1(H) is normal in Gi+1, and Gi is normal in H. So

0 = G0 ( G1 ( G2 ( · · · ( Gi ( π−1(H) ( Gi+1 ( · · · ( Gr = G

is a longer chain, contradiction. �

Such a chain is called a composition series for G.

Preliminary lemmas

Lemma 1: Let G be a group, H a normal subgroup and A an arbitrary subgroup of G. Then
AH is a subgroup of G, where AH is the set of products {ah : a ∈ A, h ∈ H}.

Proof 1: We need to show that AH is closed under multiplication and inverses. For the first,
let a1, a2 ∈ A and h1, h2 ∈ H. Notice that

(a1h1)(a2h2) = (a1a2)(a
−1
2 h1a2h2).

Since H is normal, we have a−1
2 h1a2 ∈ H. So (a−1

2 h1a2h2) ∈ H and, clearly, a1a2 ∈ A.

Similarly, for a ∈ A and h ∈ H, we have

(ah)−1 = h−1a−1 = a−1(ah−1a−1)

and we see that (ah)−1 ∈ AH. �
1
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Proof 2: Let π be the map G→ G/H. Then AH = π−1(A), which is clearly a subgroup of G.
�

Lemma 2 (Theorem 9 in the textbook): Let G be a group, with A and B normal subgroups
and A ∩B = {1G}. Then A×B ∼= AB, and the isomorphism is (a, b) 7→ ab.

This was done in class on Jan. 14; we repeat the proof:

Proof: We want to show that (a1b1)(a2b2) = (a1a2)(b1b2). So we must show that b1a2 = a2b1.
In other words, we must check that, for a ∈ A and b ∈ B, we have ab = ba.

Set c = aba−1b−1. Then c = (aba−1)b−1 is in B. But, since c = a(ba−1b−1), we also have a ∈ A.
So c ∈ A ∩B, and we have c = 1G. We have shown aba−1b−1 = 1; rearranging gives ab = ba.�

Lemma 3: Let G be a group, let M and N be normal subgroups, M 6= N , with G/M and G/N
simple. Then G/(M∩N) = G/M×G/N and we have M/(M∩N) ∼= G/N and N/(M∩N) ∼= G/M .

Proof: Notice that we cannot have M ( N . If we did, then N/M is normal in G/M and is
neither G/M nor {1}, contradicting that G/M is simple. So M 6⊆ N . Similarly, N 6⊆M .

Set K = M ∩ N . Since it is an intersection of two normal subgroups, it is normal. Replace
(G,M,N) by (G/K,M/K,N/K). This preserves the truth of all the hypotheses and all the con-
clusions, and gives us the additional tool of letting us assume that M ∩N = {1}.

From the preceding lemma, we have MN = M × N . Also, since M and N are normal, the
subgroup MN is normal in G. We claim that G = MN . Proof: Since MN is normal in G,
the subgroup MN/M is normal in G/M . Since G/M is simple, we have MN/N = G/M or
MN/M = {1}. The second possibility is wrong because N 6⊆ M , so MN 6= M . The first
possibility, must then be right: MN/M = G/M . So MN = G. We have deduced that G ∼= M×N .
That specific statement is only right with the additional tool of M ∩N = {1}. But the consequence
G/(M ∩N) ∼= G/M ×G/N lifts back to the original case, as do the others. �

The Jordan-Holder theorem

Our proof is by induction on |G|. The base case, |G| = 1, is trivial. We use the symbol ∼ to
denote “are rearrangements of each other”.

Fix two chains 0 = G0 ( G1 ( G2 ( · · · ( Gr = G and 0 = H0 ( H1 ( H2 ( · · · ( Hs = G
as in the statement of the theorem. If Gr−1 = Hs−1 then we are done by induction, applying the
inductive hypothesis to the group Gr−1. So we may assume that Gr−1 6= Hs−1. We set

M = Gr−1 N = Hs−1 K = M ∩N.

Using Lemma 2, we can find a composition series

0 = K0 ( K1 ( K2 ( · · · ( Kt = K

for K.

Then 0 = G0 ( G1 ( G2 ( · · · ( Gr−1 = M and 0 = K0 ( K1 ( K2 ( · · · ( Kt = K ( M are
both composition series for M . By induction, we have r − 1 = t+ 1 and we have

(G1/G0, G2/G1, . . . , Gr−2/Gr−1) ∼ (K1/K0,K2/K1, . . . ,Kt/Kt−1,M/K). (∗)
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Similarly, 0 = H0 ( H1 ( H2 ( · · · ( Hs−1 = N and 0 = K0 ( K1 ( K2 ( · · · ( Kt = K ( N
are both composition series for N . So s− 1 = t+ 1 and the successive quotients

(H1/H0, H2/H1, . . . ,Hs−2/Hs−1) ∼ (K1/K0,K2/K1, . . . ,Kt/Kt−1, N/K). (∗∗)

From the equalities r−1 = t+1 = s−1 we immediately deduce r = s. Taking (∗) and appending
the quotient G/M to both lists, we have

(G1/G0, G2/G1, . . . , Gr−2/Gr−1, G/Gr−1) ∼ (K1/K0,K2/K1, . . . ,Kt/Kt−1,M/K,G/M).

Similarly (∗∗) gives,

(H1/H0, H2/H1, . . . ,Hs−2/Hs−1, G/Hs−1) ∼ (K1/K0,K2/K1, . . . ,Kt/Kt−1, N/K,G/N).

The right hand sides of the above equations are identical except for the last two elements. And, by
Lemma 3, we have (M/K,G/M) ∼ (N/K,G/N). �


