Problem Set 10 – Due Thursday, April 6

- 1. Let L be the splitting field of $x^4 2$ over \mathbb{Q} .
 - (a) What is the Galois group of L over \mathbb{Q} ?
 - (b) Explicitly describe all subfields K of L such that $[K : \mathbb{Q}] = 4$.
- 2. Let $\theta = \sqrt{13 + 2\sqrt{13}}$.
 - (a) Show that the polynomial $(x^2 13)^2 52$ splits in $\mathbb{Q}(\theta)$.
 - (b) Show that $\mathbb{Q}(\theta)$ is Galois over \mathbb{Q} with Galois group C_4 .
- 3. Let α be a complex number. We define α to be an algebraic integer if it obeys a polynomial relation of the form $\alpha^n + c_1 \alpha^{n-1} + \cdots + c_{n-1} \alpha + c_n = 0$ with the c_i integers.
 - (a) Show that α is an algebraic integer if and only if the \mathbb{Z} module spanned by 1, α , α^2 , α^3 , ... is finitely generated over \mathbb{Z} .
 - (b) Show that, if α and β are algebraic integers, so are $\alpha + \beta$ and $\alpha\beta$.
 - (c) Show that, if α is an algebraic integer, then the minimal polynomial of α over \mathbb{Q} is of the form $\alpha^n + c_1 \alpha^{n-1} + \cdots + c_{n-1} \alpha + c_n = 0$ with the c_i integers. (Hint: Quote something from a previous problem set.)
 - (d) Show that a rational number is an algebraic integer if and only if it is an integer.
- 4. Suppose that $p(x) \in \mathbb{Q}[x]$ is a polynomial of degree 5 with distinct roots $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ and α_5 . Suppose that $\mathbb{Q}(\alpha_1, \alpha_2, \alpha_3, \alpha_4, \alpha_5)/\mathbb{Q}$ is Galois with Galois group S_5 . Show that

 $\mathbb{Q}(\alpha_1 + \alpha_2 + \alpha_3 + 2\alpha_4) \cap \mathbb{Q}(2\alpha_2 + \alpha_3 + \alpha_4 + \alpha_5) = \mathbb{Q}.$

5. This problem proves the Artin-Schrier Lemma, which is the characteristic p version of Kummer's Lemma. Let K be a field of characteristic p > 0, and let L/K be a Galois extension with Galois group C_p . This theorem says that $L \cong K[x]/(x^p - x - a)$ for some $a \in K$.

Let σ generate C_p .

- (a) Let $\nu : L \to L$ be the map $x \mapsto \sigma(x) x$. Show that there is some $y \in L$ such that $\nu(y) \neq 0$ but $\nu^2(y) = 0$. (Hint: What can we say about ν as a K-linear map?) Let y be as in the previous part and let $z = \nu(y)$. Set x = y/z.
- (b) Show that $z \in K$.
- (c) Show that $\sigma(x) = x + 1$.
- (d) Show that $x^p x \in K$. Set $a = x^p - x$.
- (e) Show that L = K(x) and the minimal polynomial of x is $x^p x a = 0$.