## Problem Set 5 : Due Thursday, February 16

See the course website for homework policy.

1. Let G be a group. Recall that we defined the commutator subgroup,  $[G, G]$ , to be the subgroup *generated by* all elements of the form  $ghg^{-1}h^{-1}$ . In this problem, we will construct a group where not all elements of G are of the form  $ghg^{-1}h^{-1}$ .

Let k be a field. Let G be the group of  $7 \times 7$  matrices with entries in k of the form



We will abbreviate this matrix as  $g(u, v, A)$  where u and v are length 3 column vectors, and A is a  $3 \times 3$  matrix.

- (a) Verify that  $g(u, v, A)^{-1} = g(-u, -v, -A + uv^T)$ . (Note that  $uv^T$  is a  $3 \times 3$  matrix.)
- (b) Show that  $g(u, v, A)g(u', v', A')g(u, v, A)^{-1}g(u', v', A')^{-1}$  is of the form  $g(0, 0, B)$ , and give a formula for B in terms of u, v, A, u', v', A'.
- (c) Show that the matrix B in part (b) has rank  $\leq 2$ .
- (d) Show that, for any  $3 \times 3$  matrix C, the element  $g(0,0,C)$  is in the group  $[G,G]$ .
- 2. In this problem, we show that every finite nilpotent group is a product of  $p$ -groups.
	- (a) Let p be prime and let  $1 \to P \to G_1 \to G_2 \to 1$  be a short exact sequence where P is a *p*-group. Let  $P_r$  be a *p*-Sylow of  $G_r$ . Show that, if  $P_2 \triangleleft G_2$ , then  $P_1 \triangleleft G_1$ .
	- (b) Let p be prime and let  $1 \to Z \to G_1 \to G_2 \to 1$  be a short exact sequence where Z is central and  $p \nmid \#(Z)$ . Let  $P_r$  be a p-Sylow of  $G_r$ . Show that, if  $P_2 \triangleleft G_2$ , then  $P_1 \triangleleft G_1$ .
	- (c) Let G be a finite nilpotent group and let P be a p-Sylow of G. Show that  $P \triangleleft G$ .
	- (d) Let |G| have prime factorization  $\prod p_i^{a_i}$  and let  $P_i$  be a  $p_i$ -Sylow. Show that  $G \cong \prod P_i$ .
- 3. Let G be a group with  $8 \cdot 7^m$  elements.
	- (a) Show that the number of 7-Sylow subgroups of  $G$  is 1 or 8.
	- (b) Show that, if  $S_8$  is the symmetric group, and  $\phi : G \to S_8$  is a group homomorphism, then the image of  $\phi$  has  $\leq 56$  elements.
	- (c) Show that G is solvable. You may use that all groups of order  $\lt 60$  are solvable.