Problem Set 6 : Due Thursday, February 23

See the course website for homework policy.

- 1. Show that there is no simple group of order 84.
- 2. Let G be $C_{15} \rtimes C_2^2$, where the generators of C_2^2 act by 4 and 11. Let $P \subset G$ be the image of a splitting $G \leftarrow C_2^2$.
 - (a) Recall that the normalizer of P is defined to be $N_G(P) := \{g \in G : gPg^{-1} = P\}$. Compute the order of $N_G(P)$.
 - (b) How many 2-Sylows does G have?
- 3. Show that there are no simple group of order 300.
- 4. Let G be a simple group of order 360. How many 5-Sylows does G have?
- 5. In this problem, we will check that A_n is simple for $n \ge 5$. Our proof is by induction on n, and you may assume the base case n = 5 without proof. (Alternatively, here is a slick proof: The conjugacy classes in A_5 have sizes 1, 15, 20, 12 and 12. No subset of these adds up to a divisor of 60, so no union of conjugacy classes can be a subgroup.)
 - (a) Let n ≥ 5 and let σ be any nontrivial element of A_n. Show that there is some σ', conjugate to σ, such that σ ≠ σ' and σ(σ')⁻¹ has a fixed point.
 Let n ≥ 5 and let N be a nontrivial normal subgroup of A_n. For 1 ≤ i ≤ n, let H_i be the subgroup of σ ∈ A_{n-1} with σ(i) = i.
 - (b) Show that $N \cap H_i$ is nontrivial for some *i*.
 - (c) Show that $N \supseteq H_i$ for some *i*. Then show $N \supseteq \bigcup_i H_i$.
 - (d) Show that $H = A_n$.