Problem Set 8 : Due Thursday, March 23

See the course website for homework policy.

On this problem set, you may assume the truth of the main Theorem of Galois theory: Let L/K be a finite Galois extension, with Galois group G. The fields F with $K \subseteq F \subseteq L$ are in bijection with the subgroups H of G. The bijection takes $F \mapsto \{g \in G : g\theta = \theta \ \forall \theta \in F\}$ and $H \mapsto \{\theta \in L : g\theta = \theta \ \forall g \in G\}$. We have $[L : L^H] = \#(H)$.

- 1. Suppose that K/\mathbb{Q} is a Galois extension. Prove that, for any subfield F of K, there exist subfields F_1, \ldots, F_r of K such that $F = \bigcap F_i$ and all the degrees $[K : F_i]$ are prime powers.
- 2. Let K be the field $\mathbb{Q}(\omega)$, where ω is a primitive 3rd root of unity. Write $\alpha \mapsto \overline{\alpha}$ for the nontrivial automorphism of K. Let $L = K(\sqrt[3]{\alpha}, \sqrt[3]{\overline{\alpha}})$ for some $\alpha \in K$.
 - (a) Show that L/\mathbb{Q} is Galois. Show that $\#\operatorname{Gal}(L/\mathbb{Q})$ divides 18 and that $\#\operatorname{Gal}(L/\mathbb{Q})$ is even.
 - (b) Show that $\operatorname{Gal}(L/\mathbb{Q})$ is a subgroup of S_3 if and only if $\alpha/\overline{\alpha}$ is a cube in K.
 - (c) Show that $\operatorname{Gal}(L/\mathbb{Q})$ is a subgroup of $\mathbb{Z}/6$ if and only if $\alpha \overline{\alpha}$ is a cube in K.
 - (d) Let $\alpha = 7(2 \omega)$. Note that $\alpha \bar{\alpha} = 7^3$. Explicitly write out how an order two element of $\operatorname{Gal}(L/\mathbb{Q})$ permutes the cube roots of α and $\bar{\alpha}$.
- 3. Let L/K be a finite extension of fields. For $\theta \in L$, define $\text{Tr}(\theta)$ to be the trace of the map $x \mapsto \theta x$, where we are thinking of this map as $[L:K] \times [L:K]$ matrix with entries in K.
 - (a) Show that $\operatorname{Tr}(\theta_1 + \theta_2) = \operatorname{Tr}(\theta_1) + \operatorname{Tr}(\theta_2)$. Show that, for $a \in K$, we have $\operatorname{Tr}(a\theta) = a \operatorname{Tr}(\theta)$.
 - (b) Suppose that $L = K(\theta)$, and $f(x) = x^n + f_{n-1}x^{n-1} + \cdots + f_1x + f_0$ is the minimal polynomial of θ . Show that $\text{Tr}(\theta) = -f_{n-1}$.
 - (c) Let f(x) be the minimal polynomial of θ and let $[L : K(\theta)] = m$. Show that $\text{Tr}(\theta) = -mf_{n-1}$.
 - (d) Let L/K be Galois with Galois group G. Show that $\operatorname{Tr}(\theta) = \sum_{a \in G} g\theta$.
 - (e) (Harder) Suppose that $L = K(\theta)$ and $x^n + f_{n-1}x^{n-1} + \cdots + f_1x + f_0$ is the minimal polynomial of θ . Define the polynomial $g(x) = 1 + f_{n-1}x + \cdots + f_0x^n = x^n f(1/x)$. Show that:

$$\sum_{j=1}^{\infty} \operatorname{Tr}(\theta^j) x^j = -x \frac{g'(x)}{g(x)}.$$

Show that, if f' is not the zero polynomial, then $\text{Tr}(\theta^j) \neq 0$ for some j.

- 4. Let L/K be a Galois extension with Galois group G. Let F be a field with $K \subset F \subset L$ and let H be the subgroup of G fixing F. Let $X \subset G$ be the set of $g \in G$ with gF = F.
 - (a) Describe X in terms of purely group theoretic operations involving G and H.
 - (b) Let $A = \operatorname{Aut}(F/K)$. Describe a map $X \to A$ and show that it is a surjection.
 - (c) Describe A in terms of purely group theoretic operations involving G and H.