THE SECOND HALF OF THE SCHUR-ZASSENHAUS THEOREM

The goal of this note is to prove the following result: Let A be an abelian group and B a finite group such that multiplication by |B| is invertible on A. Let $1 \to A \to G \to B \to 1$ be a short exact sequence. Then this sequence is right split, meaning there is a map of groups $B \to G$ with $B \to G \to B$ the identity.

We will write the group A additively, and G and B multiplicatively, so we write $\exp : A \to G$.

Since A is normal in G , there is a conjugation action of G on A . Since A is abelian, this action factors through the quotient B. We write $\rho : B \to \text{Aut}(A)$ for this action. In equations, if $b \in B$ and \bar{b} is any lift of \bar{b} to G , then we have

$$
\tilde{b}\exp(a) = \exp(\rho(b)\cdot a)\tilde{b}.
$$

Choose any set theoretic section $\sigma : B \to G$ and define $\psi : B \times B \to A$ by

$$
\sigma(b_1)\sigma(b_2)=\exp(\psi(b_1,b_2))\sigma(b_1b_2).
$$

So $\psi = 0$ if and only if σ is a map of groups.

We note that ρ and ψ determine the multiplication in G, since we have

(1)
$$
\exp(a_1)\sigma(b_1)\exp(a_2)\sigma(b_2) = \exp(a_1 + \rho(b_1) \cdot a_2)\sigma(b_1)\sigma(b_2) =
$$

$$
\exp(a_1 + \rho(b_1) \cdot a_2 + \psi(b_1, b_2))\sigma(b_1b_2).
$$

We want to show that we can modify the section σ to be a map of groups. Any such modification is of the form $b \mapsto \exp(-\alpha(b))\sigma(b)$ for some map of sets $\alpha : B \to A$.

We want

$$
\exp(-\alpha(b_1))\sigma(b_1)\exp(-\alpha(b_2))\sigma(b_2)=\exp(-\alpha(b_1b_2))\sigma(b_1b_2).
$$

Using Equation (1), this is the same as

$$
\exp(-\alpha(b_1) - \rho(b_1) \cdot \alpha(b_2) + \psi(b_1, b_2))\sigma(b_1b_2) = \exp(-\alpha(b_1b_2))\sigma(b_1b_2)
$$

or, in other words,

(2)
$$
\psi(b_1, b_2) = \alpha(b_1) + \rho(b_1) \cdot \alpha(b_2) - \alpha(b_1b_2).
$$

We compute $\sigma(b_1)\sigma(b_2)\sigma(b_3)$ in two ways:

$$
\begin{array}{l} [\sigma(b_1)\sigma(b_2)]\,\sigma(b_3) \,=\, \exp(\psi(b_1,b_2))\sigma(b_1b_2)\sigma(b_3) \,=\, \exp(\psi(b_1,b_2) + \psi(b_1b_2,b_3)) & \sigma(b_1b_2b_3) \\ \sigma(b_1)\,[\sigma(b_2)\sigma(b_3)] \,=\, \sigma(b_1)\exp(\psi(b_2,b_3))\sigma(b_2b_3) \,=\, \exp(\rho(b_1)\cdot\psi(b_2,b_3) + \psi(b_1,b_2b_3)) & \sigma(b_1b_2b_3). \end{array}
$$

Comparing the right hand sides, and taking the opportunity to rearrange,

(3)
$$
\psi(b_1, b_2) = \psi(b_1, b_2b_3) + \rho(b_1) \cdot \psi(b_2, b_3) - \psi(b_1b_2, b_3).
$$

So we know (3) and want to deduce (2). Since $|B|$ is invertible in A, we can average equation (3) over b_3 . As b_3 ranges over B, so does b_2b_3 , so we deduce

$$
\psi(b_1, b_2) = \frac{1}{|B|} \sum_{b \in B} \psi(b_1, b) + \rho(b_1) \cdot \frac{1}{|B|} \sum_{b \in B} \psi(b_2, b) - \frac{1}{|B|} \sum_{b \in B} \psi(b_1 b_2, b).
$$

Defining

$$
\alpha(b') = \frac{1}{|B|} \sum_{b \in B} \psi(b', b),
$$

we see that α satisfies (2). \Box

Remark: There are related results in the theory of Lie groups: If K is a compact Lie group, V a finite dimensional vector space and $1 \to V \to G \to K \to 1$ a short exact sequence, then this sequence is right split. We just replace the average over B by an integral over K . We can do more. Define a Lie group U to be unipotent if it has a central filtration whose quotients are vector spaces. Repeating the earlier steps in the deduction of the Schur-Zassenhaus theorem, we can deduce that any short exact sequence $1 \to U \to G \to K \to 1$ with U unipotent and K compact is right split.