For any communative ring R, $SL_2(R)$ is the group of 2×2 matrices with entries in R and determinant 1.

Problem 1 If a and b are relatively prime, show that

$$\operatorname{SL}_2(\mathbb{Z}/(ab)) \cong \operatorname{SL}_2(\mathbb{Z}/a) \times \operatorname{SL}_2(\mathbb{Z}/b).$$

Problem 2 Let p be prime. Show that the obvious map $SL_2(\mathbb{Z}/p^k) \to SL_2(\mathbb{Z}/p^{k-1})$ is surjective.

Problem 3 Describe the kernel of the map in the previous problem as an abstract group.

Problem 4 Show that $SL_2(\mathbb{Z}/2) \cong S_3$.

Let $\mathbb{P}^1(\mathbb{F}_3)$ be the set of lines through the origin in the vector space \mathbb{F}_3^2 over the field with 3 elements. The action of $\mathrm{SL}_2(\mathbb{Z}/3)$ on $\mathbb{P}^1(\mathbb{F}_3)$ gives a map $\phi : \mathrm{SL}_2(\mathbb{Z}/3) \to S_4$. **Problem 5** Describe the kernel of ϕ as a well known group.

Problem 6 Describe the image of ϕ as a well known subgroup of S_4 .

Problem 7 Show that $SL_2(\mathbb{Z}/3)$ has order 24. Is $SL_2(\mathbb{Z}/3)$ isomorphic to S_4 ?