PROBLEM SET 10: DUE WEDNESDAY, APRIL 8

Problem 10.1. This is a lemma that will be useful in the future: Let k be an infinite field.

- (1) Let $f(x_1, \ldots, x_n) \in k[x_1, \ldots, x_n]$ and suppose that $f(\theta_1, \ldots, \theta_n) = 0$ for all $(\theta_1, \ldots, \theta_n) \in k^n$. Show that f is the zero polynomial. (Hint: Induct on n.)
- (2) Let H_1, H_2, \ldots, H_N be a list of finitely many proper k-vector subspaces $H_j \subsetneq k^n$. Show that $\bigcup H_j \neq k^n$.

Problem 10.2. Let p be prime. Let $f(x) \in \mathbb{Q}[x]$ be an irreducible polynomial of degree p that has 2 complex roots and p-2 real roots. Let L be the splitting field of f over \mathbb{Q} . Show that $\operatorname{Gal}(L/\mathbb{Q})$ is S_p . (Hint: Look at problem 9.1.)

Problem 10.3. Let $L = \mathbb{Q}(\sqrt[6]{-3})$.

- (1) Show that L/\mathbb{Q} is Galois. (Hint: recall that the primitive sixth roots of unity are $\frac{1\pm\sqrt{-3}}{2}$.)
- (2) Compute $\operatorname{Gal}(L/\mathbb{Q})$.

Problem 10.4. Consider the polynomial $f(x) = x^{44} - 1$ in $\mathbb{F}_3[x]$.

- (1) Show that f(x) splits in $\mathbb{F}_{3^{10}}$.
- (2) How many roots does f(x) have in each of the fields \mathbb{F}_3 , \mathbb{F}_{3^2} and \mathbb{F}_{3^5} ?
- (3) If we factor f(x) into irreducible factors over \mathbb{F}_3 , how many factors of degree 10 will there be?

Problem 10.5. Let ζ be a primitive *n*-th root of unity and let $\Phi_n(x) = \prod_{m \in (\mathbb{Z}/m\mathbb{Z})^{\times}} (x - \zeta^m)$, which is known as the *n*-th cyclotomic polynomial. Let $L = \mathbb{Q}(\zeta)$.

- (1) Show that the coefficients of f are fixed by $\operatorname{Gal}(L/\mathbb{Q})$ and deduce¹ that $\Phi_n(x) \in \mathbb{Q}[x]$.
- (2) Look at Problem 6.7 and deduce that $\Phi_n(x) \in \mathbb{Z}[x]$.

Problem 10.6. Let p be a prime number and let ζ_p be a primitive p-th root of unity. Let

$$\Phi_p(x) = \frac{x^p - 1}{x - 1} = x^{p - 1} + x^{p - 2} + \dots + x + 1.$$

- (1) Show that $\Phi_p(x)$ is the minimal polynomial of ζ_p over \mathbb{Q} . Hint: You'll want to show that $\Phi_p(x)$ is irreducible; the usual trick is to put x = y + 1 and use Eisenstein's irreducibility criterion.
- (2) Show that $\operatorname{Aut}(\mathbb{Q}(\zeta_p)/\mathbb{Q}) \cong (\mathbb{Z}/p\mathbb{Z})^{\times}$.

Problem 10.7. Let *R* be a commutative ring and *M* an *A*-module. A *derivation from* $R \to M$ is a map $D : R \to M$ obeying D(f+g) = D(f) + D(g) and D(fg) = fD(g) + gD(f). So $f(x) \mapsto f'(x)$ is a derivation $k[x] \longrightarrow k[x]$. Let *k* be a field and let $d : k \to k$ be a derivation. Let $a \in k[y]$. Show that there is a unique derivation $D : k[y] \to k[y]$ which restricts to *d* on *k* and has D(y) = a.

Problem 10.8. Let K be a field of characteristic p and let L/K be a Galois extension with Galois group the cyclic group of order p. We write g for a generator of Gal(L/K). In this problem, we consider g as a K-linear map from $L \to L$.

- (1) Show that the characteristic polynomial of g is $(T-1)^p$.
- (2) Show that the Jordan form of g consists of a single $p \times p$ Jordan block, with 1's on the diagonal.
- (3) Show that there is an element α of L with $g(\alpha) = \alpha + 1$.
- (4) Putting $\beta = \alpha^p \alpha$, show that $\beta \in K$ and show that $L \cong K[x]/(x^p x \beta)$.

You have now proved that any extension L/K as in the hypotheses of this problem is of the form $K[x]/(x^p - x - \beta)$ for some $\beta \in K$. This is the *Artin-Schrier theorem*.

¹There are other ways to show this, but I'd like you to work through this route because it is an important method that applies to many other examples.