10. SOLVABLE GROUPS

We recall that the commutator subgroup [G, G] of a group G is the subgroup generated by all products $ghg^{-1}h^{-1}$.

Definition. The *derived series* of G is the sequence of subgroups $D_0(G) \supseteq D_1(G) \supseteq D_2(G) \supseteq \cdots$ defined inductively by $D_0(G) = G$ and $D_k(G) = [D_{k-1}(G), D_{k-1}(G)]$. We call $D_k(G)$ the *k*-th derived subgroup.

Remark. The k-derived subgroup is often also denoted $G^{(k)}$. The parentheses in $G^{(k)}$ is meant to distinguish $G^{(k)}$ from the k-fold product of G with itself. Professor Speyer recommends, instead, using words to do this: Say "let $G^{(k)}$ be the k-th derived subgroup ..." or "let G^k be the k-fold product of G with itself"

Problem 10.1. Check that the derived series of S_4 is $S_4 \supset A_4 \supset V \supset \{e\}$ where V is the four element group generated by (12)(34) and (13)(24).

Definition. A group G is called *solvable* if there is some index N such that the N-th derived subgroup is trivial.

Problem 10.2. Show that a group G is solvable if and only if it has a subnormal series in which each subquotient is abelian.

Problem 10.3. Show that subgroups of solvable groups are solvable.

Problem 10.4. Show that quotients of solvable groups are solvable.

Problem 10.5. Let $1 \to A \to B \to C \to 1$ be a short exact sequence with A and C solvable. Show that B is solvable.

Problem 10.6. Let G be the group of bijections $\mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$ of the form $x \mapsto ax + b$. Show that G is solvable.

Problem 10.7. Let k be a field and let B be the group of invertible upper triangular $n \times n$ matrices with entries in k. Show that B is solvable.