Problem 11.1. Let $\theta_1, \theta_2, \ldots, \theta_n$ be algebraic numbers such that $[\mathbb{Q}(\theta_j) : \mathbb{Q}] \leq 5$ for all j. Let ϕ be an algebraic number with minimal polynomial f over \mathbb{Q} ; let L be the splitting field of f over \mathbb{Q} and suppose that $\operatorname{Gal}(L/\mathbb{Q}) \cong S_6$. Show that $\phi \notin \mathbb{Q}(\theta_1, \ldots, \theta_n)$.

Problem 11.2. Let p be an odd prime. Let $f(x) \in \mathbb{Q}[x]$ be an irreducible polynomial of degree p, let L be the splitting field of f and suppose that $\operatorname{Gal}(L/\mathbb{Q})$ is the dihedral group of order 2p, embedded in S_p in the usual way. Show that f has either 1 real root or else p real roots.

Problem 11.3. Let F/K be a separable extension of finite degree and let L be the Galois closure of F. Let G = Gal(L/K) and let H = Stab(F). Let $\theta \in F$. Show that $T_{F/K}(\theta) = \sum_{g \in G/H} g(\theta)$ and $N_{F/K}(\theta) = \prod_{g \in G/H} g(\theta)$. Here we sum over cosets of G/H, choosing one element from each coset, and N and T are the norm and trace.

Problem 11.4. (Implicit Differentiation) Let k be a field, let $d : k \to k$ be a derivation (see Problem 10.7) and let $f(y) = \sum_j f_j y^j$ be an irreducible polynomial in k[y]. Define $\frac{\partial f}{\partial y} = \sum_j f_j y^{j-1}$ and assume that $\frac{\partial f}{\partial y} \neq 0$. Let K be the field k[y]/f(y)k[y].

- (1) Show that there is precisely one derivation $D: K \to K$ which restricts to d on k. (Problem 10.7 was meant to be useful, but I accidentally made its conclusion too weak. You may pretend you proved the following instead: Let k be a field, let M be a k[y]-module and let $d: k \to M$ be a derivation. Let $a \in M$. Then there is a unique derivation $D: k[y] \to M$ which restricts to d on k and has D(y) = a.)
- (2) (Problem 8, Math 115 Exam 2, Fall 2017) To check that you understand what you just did, we do a special case: Let $k = \mathbb{R}(x)$, the field of rational functions in x. Let d be the derivation $\frac{d}{dx} : k \to k$. Let $K = k[y]/((y^2 + x^2)^2 + 2xy^2 81)k[y]$. Compute D(y) for the unique D extending d.

Problem 11.5. This problem provides a Galois theory proof of the fundamental theorem of algebra. Thus, you may not assume in this question that \mathbb{C} is algebraically closed. Suppose, for the sake of contradiction, that there is a polynomial $f(x) \in \mathbb{C}[x]$ which does not have a root in \mathbb{C} .

(1) Under the assumption that there is such a polynomial, show that there is a finite degree field extension $\mathbb{R} \subset \mathbb{C} \subsetneq K$ with K/\mathbb{R} Galois.

Let $G = \operatorname{Gal}(K/\mathbb{R})$ and let $\#(G) = 2^k m$ with m odd.

- (2) Show that there is a field F with $\mathbb{R} \subseteq F \subseteq K$ such that $[F : \mathbb{R}] = m$.
- (3) Show that m = 1. You may assume that any odd degree polynomial in $\mathbb{R}[x]$ has a root in \mathbb{R}^{1} .

You have now shown that G is a 2-group.

(4) Show that there is a field F' with $\mathbb{C} \subseteq F' \subseteq K$ with $[F' : \mathbb{C}] = 2$ and derive a contradiction. You may assume that every element of \mathbb{C} has a square root.²

Problem 11.6. Let ζ be a primitive *n*-th root of unity and let $L = \mathbb{Q}(\zeta)$. In problem 8.1, you showed that $\operatorname{Gal}(L/\mathbb{Q})$ was a subgroup of $(\mathbb{Z}/n\mathbb{Z})^{\times}$, with $a \in (\mathbb{Z}/n\mathbb{Z})^{\times}$ acting by $\zeta \mapsto \zeta^a$. Let this subgroup be A. In this problem, we will show that $A = (\mathbb{Z}/n\mathbb{Z})^{\times}$. For each $u \in (\mathbb{Z}/n\mathbb{Z})^{\times}$, put $f_u(z) = \prod_{a \in A} (z - \zeta^{au})$.

(1) Show that all the $f_u(z)$ have integer coefficients.

In the next parts, let p be a prime not dividing n.

- (2) Let u and v lie in different cosets of $(\mathbb{Z}/n\mathbb{Z})^{\times}/A$. Show that $f_u(z)$ and $f_v(z)$ are relatively prime in $\mathbb{F}_p[z]$.
- (3) Show that $f_u(z) \equiv f_{pu}(z) \mod p\mathbb{Z}[x]$.
- (4) Show that the class of p modulo n lies in A.

You have now shown that every prime not dividing n lies in A modulo n.

(5) Show that $A = (\mathbb{Z}/n\mathbb{Z})^{\times}$. (This is much easier than Dirichlet's theorem on primes in an arithmetic progression, so please don't use that.)

²Proof: For two of the four sign choices, we have $\sqrt{a+b\,i} = \pm \sqrt{\frac{\sqrt{a^2+b^2+a}}{2}} \pm \sqrt{\frac{\sqrt{a^2+b^2-a}}{2}} i$.

¹Proof: Use the intermediate value theorem.