
PROBLEM SET 11: DUE WEDNESDAY, APRIL 15

Problem 11.1. Let θ1, θ2, . . . , θn be algebraic numbers such that [Q(θj) : Q] ≤ 5 for all j. Let φ be an algebraic
number with minimal polynomial f over Q; let L be the splitting field of f over Q and suppose that Gal(L/Q) ∼= S6.
Show that φ 6∈ Q(θ1, . . . , θn).

Problem 11.2. Let p be an odd prime. Let f(x) ∈ Q[x] be an irreducible polynomial of degree p, let L be the
splitting field of f and suppose that Gal(L/Q) is the dihedral group of order 2p, embedded in Sp in the usual way.
Show that f has either 1 real root or else p real roots.

Problem 11.3. Let F/K be a separable extension of finite degree and let L be the Galois closure of F . Let G =
Gal(L/K) and let H = Stab(F ). Let θ ∈ F . Show that TF/K(θ) =

∑
g∈G/H g(θ) and NF/K(θ) =

∏
g∈G/H g(θ).

Here we sum over cosets of G/H , choosing one element from each coset, and N and T are the norm and trace.

Problem 11.4. (Implicit Differentiation) Let k be a field, let d : k → k be a derivation (see Problem 10.7) and let
f(y) =

∑
j fjy

j be an irreducible polynomial in k[y]. Define ∂f
∂y =

∑
jfjy

j−1 and assume that ∂f∂y 6= 0. Let K be
the field k[y]/f(y)k[y].

(1) Show that there is precisely one derivation D : K → K which restricts to d on k. (Problem 10.7 was meant
to be useful, but I accidentally made its conclusion too weak. You may pretend you proved the following
instead: Let k be a field, let M be a k[y]-module and let d : k →M be a derivation. Let a ∈M . Then there
is a unique derivation D : k[y]→M which restricts to d on k and has D(y) = a.)

(2) (Problem 8, Math 115 Exam 2, Fall 2017) To check that you understand what you just did, we do a
special case: Let k = R(x), the field of rational functions in x. Let d be the derivation d

dx : k → k. Let
K = k[y]/((y2 + x2)2 + 2xy2 − 81)k[y]. Compute D(y) for the unique D extending d.

Problem 11.5. This problem provides a Galois theory proof of the fundamental theorem of algebra. Thus, you may
not assume in this question that C is algebraically closed. Suppose, for the sake of contradiction, that there is a
polynomial f(x) ∈ C[x] which does not have a root in C.

(1) Under the assumption that there is such a polynomial, show that there is a finite degree field extension
R ⊂ C ( K with K/R Galois.

Let G = Gal(K/R) and let #(G) = 2km with m odd.

(2) Show that there is a field F with R ⊆ F ⊆ K such that [F : R] = m.
(3) Show that m = 1. You may assume that any odd degree polynomial in R[x] has a root in R. 1

You have now shown that G is a 2-group.

(4) Show that there is a field F ′ with C ⊆ F ′ ⊆ K with [F ′ : C] = 2 and derive a contradiction. You may
assume that every element of C has a square root. 2

Problem 11.6. Let ζ be a primitive n-th root of unity and let L = Q(ζ). In problem 8.1, you showed that Gal(L/Q)
was a subgroup of (Z/nZ)×, with a ∈ (Z/nZ)× acting by ζ 7→ ζa. Let this subgroup be A. In this problem, we
will show that A = (Z/nZ)×. For each u ∈ (Z/nZ)×, put fu(z) =

∏
a∈A(z − ζau).

(1) Show that all the fu(z) have integer coefficients.

In the next parts, let p be a prime not dividing n.

(2) Let u and v lie in different cosets of (Z/nZ)×/A. Show that fu(z) and fv(z) are relatively prime in Fp[z].
(3) Show that fu(z) ≡ fpu(z) mod pZ[x].
(4) Show that the class of p modulo n lies in A.

You have now shown that every prime not dividing n lies in A modulo n.

(5) Show that A = (Z/nZ)×. (This is much easier than Dirichlet’s theorem on primes in an arithmetic progres-
sion, so please don’t use that.)

1Proof: Use the intermediate value theorem.
2Proof: For two of the four sign choices, we have

√
a+ b i = ±

√√
a2+b2+a

2
±

√√
a2+b2−a

2
i.
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