Definition. The *center* of a group G is the set $Z(G) := \{h : gh = hg \forall g \in G\}.$

Problem 11.1. Let G be a group.

- (1) Check that Z(G) is a subgroup of G.
- (2) Check that Z(G) is canonical in G (and hence normal).
- (3) Check that every subgroup of Z(G) is normal in G.

Problem 11.2. Let k be a field and let U be the group of matrices with entries in k of the form $\begin{bmatrix} 1 & * & * \\ 0 & 1 & * \\ 0 & 0 & 1 \end{bmatrix}$. Show that

the center of U is the group of matrices of the form $\begin{bmatrix} 1 & 0 & * \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$.

Problem 11.3. Check that the center of S_n is trivial for $n \ge 3$.

Problem 11.4. Let *F* be a field with more than two elements. Let *B* be the group of matrices of the form $\begin{bmatrix} * & * \\ 0 & * \end{bmatrix}$. Show that the center of *F* is $\{\begin{bmatrix} z & 0 \\ 0 & z \end{bmatrix} : z \in F^{\times}\}$.

This problem was on the problem sets in a slightly different form; check that everyone in your group remembers how to do it.

Problem 11.5. Let p be a prime and let G be a group of order p^k for some $k \ge 1$. Show that Z(G) is nontrivial.

Definition. Let G be a group. A *central series* of G is a sequence of subgroups $G_0 \triangleleft G_1 \triangleleft G_2 \triangleleft \cdots \triangleleft G_N$ such that, if $g \in G$ and $h \in G_i$ then $ghg^{-1}h^{-1} \in G_{i-1}$, for $1 \leq i \leq N$. G is called *nilpotent* if it has a central series $G_0 \triangleleft G_1 \triangleleft G_2 \triangleleft \cdots \triangleleft G_N$ with $G_0 = \{e\}$ and $G_N = G$.

Remark. In many sources, a central series is required to have $G_0 = \{e\}$ and $G_N = G$, but then the "upper central series" and the "lower central series", which you will meet on the problem sets, are not central series. I prefer to take the more general definition.

Problem 11.6. Let $G_0 \triangleleft G_1 \triangleleft G_2 \triangleleft \cdots \triangleleft G_N$ be a series of subgroups of G. Show that G is a central series if and only if all the G_i are normal in G, and $G_i/G_{i-1} \subseteq Z(G/G_{i-1})$ for $1 \le i \le N$.

Problem 11.7. Let k be a field and let U be the group of matrices with entries in k of the form

Show that U is nilpotent.

Problem 11.8. Let p be a prime and let G be a group of order p^k for some $k \ge 1$. Show that G is nilpotent.

Problem 11.9. Show that a nilpotent group is solvable.

Problem 11.10. Show that a subgroup of a nilpotent group is nilpotent.

Problem 11.11. Show that a quotient of a nilpotent group is nilpotent.

Problem 11.12. Show that the following groups are solvable but not nilpotent.

- (1) The symmetric groups S_3 and S_4 .
- (2) The group of invertible matrices of the form $\begin{bmatrix} * & * \\ 0 & * \end{bmatrix}$ with entries in a field with more than two elements.

Problem 11.13. Give an example of a short exact sequence $1 \rightarrow A \rightarrow B \rightarrow C \rightarrow 1$ with A and C nilpotent but B not nilpotent.