Let p be a prime.

Definition. A *p*-group is a group P with $\#(P) = p^k$ for some k. For a group G, a *p*-subgroup of G is a subgroup which is a *p*-group.

Problem 12.1. Let P be a p group and let X be a finite set on which P acts. Suppose that $\#(X) \not\equiv 0 \mod p$. Show that P fixes some point of X.

Let G be a group. Factor #(G) as $p^k m$ where p does not divide m.

Definition. A Sylow *p*-subgroup of G is a subgroup of G of order p^k .

Large parts of the following problems appeared on the homework; please remind each other of the solutions.

Problem 12.2. Let $GL_n(\mathbb{F}_p)$ be the group of $n \times n$ matrices with entries in the field with p elements.

- (1) Show that $\#\operatorname{GL}_n(\mathbb{F}_p) = \prod_{i=0}^{n-1} (p^n p^i).$
- (2) Show that $\operatorname{GL}_n(\mathbb{F}_p)$ has a Sylow *p*-subgroup.

Problem 12.3. Let v(n) be the exponent such that $n! = p^{v(n)}m$ with p not dividing m.

- (1) Write n = pm + r with $0 \le r \le p 1$. Show that v(n) = m + v(m).
- (2) Show that S_n has a Sylow *p*-subgroup.

Problem 12.4. Let Γ be a finite group with a Sylow *p*-subgroup Π . Let *G* be a subgroup of Γ .

- (1) Show that G has a Sylow p-subgroup P. Hint: Consider G acting on Γ/Π .
- (2) Show, more specifically, that there is some $\gamma \in \Gamma$ such that $P = G \cap \gamma \Pi \gamma^{-1}$.

Hint for the following three problems: Use Problem 12.4.

Problem 12.5. (The first Sylow theorem) Show that every finite group G has a Sylow p-subgroup.

Problem 12.6. Let G be a finite group and let P be a Sylow p-subgroup with $\#(P) = p^k$.

- (1) Let Q be a p-subgroup of G. Show that there is some $g \in G$ such that $Q \subseteq gPg^{-1}$.
- (2) Let H be a subgroup of G whose order is divisible by p^k . Show that there is some $g \in G$ such that $H \supseteq gPg^{-1}$.

Problem 12.7. (The second Sylow theorem) Let G be a finite group and let P_1 and P_2 be two Sylow p-subgroup of G. Show that there is some $g \in G$ such that $P_2 = gP_1g^{-1}$.

Let G be a group and let H be a subgroup of G. We define $N_G(H) = \{g \in G : gHg^{-1} = H\}$. The group $N_G(H)$ is called the *normalizer* of H in G.

Problem 12.8. Map $G/N_G(P)$ to the set of Sylow *p*-subgroups by sending the coset $gN_G(P)$ to gPg^{-1} . Show that this map is well defined, and is a bijection.

Problem 12.9. (1) Show that P is normal in $N_G(P)$.

- (2) Let Q be a p-subgroup of $N_G(P)$. Show that $Q \subseteq P$.
- (3) Let H be a p-subgroup of G. Show that $H \cap N_G(P) = H \cap P$.

Problem 12.10. Since P is a subgroup of G, the group P acts on $G/N_G(P)$. Show that the only coset which is fixed for this action is $eN_G(P)$.

Problem 12.11. (The third Sylow theorem) The number of Sylow *p*-subgroups of G is $\equiv 1 \mod p$.