Definition: Let L be a field and K a subfield. The *degree of* L *over* K, written [L : K], is the dimension of L as a K-vector space.

Problem 18.1. Let $K \subseteq L \subseteq M$ be three fields with [L:K] and $[M:L] < \infty$. Show that [M:K] = [M:L][L:K].

Problem 18.2. Let $k \subseteq K$ be a field extension with $[K : k] < \infty$. Let $\theta \in K$ and let m(x) be the minimal polynomial of θ over k. Show that deg m(x) divides [K : k].

We illustrate these results with an extremely classical application. A real number $\theta \in \mathbb{R}$ is called *constructible* if it can be written in terms of rational numbers using the operations $+, -, \times, \div$ and $\sqrt{}$. Classically, these numbers were studied because the distance between any two points constructed with straightedge and compass is constructible; now we can motivate them by saying they are the numbers which can be computed exactly with a four function calculator.

Figure: Two ancient mathematical tools

Problem 18.3. Suppose we compute a sequence of real numbers $\theta_1, \theta_2, \theta_3, \ldots, \theta_N$ where each θ_k is either

- a rational number,
- of one of the forms $\theta_i + \theta_j$, $\theta_i \theta_j$, $\theta_i \theta_j$ or θ_i / θ_j for some i, j < k or
- of the form $\sqrt{\theta_j}$ for some j < k.

Show that $[\mathbb{Q}[\theta_1, \theta_2, \dots, \theta_N] : \mathbb{Q}]$ is a power of 2.

Problem 18.4. Let θ be a constructible real number and let m(x) be its minimal polynomial over \mathbb{Q} . Show that deg m(x) is a power of 2.

Problem 18.5. (The impossibility of doubling the cube.) Show that $\sqrt[3]{2}$ is not constructible.

Problem 18.6. (The impossibility of trisecting the angle) It is well known that a 60° angle is constructible with straightedge and compass. Show, however, that $\cos 20^{\circ}$ is not constructible. Hint:

$$4\cos^3 20^\circ - 3\cos 20^\circ = \cos 60^\circ = \frac{1}{2}.$$