PROBLEM SET 1: DUE WEDNESDAY, JANUARY 15

Please see the course website for guidance on collaboration and formatting your problem sets.

Problem 1.1. Let C be the cube $[-1, 1]^3$ in \mathbb{R}^3 and let G be the group of rotation and reflection symmetries of C. You needn't prove your answers to this problem correct.

- (1) Describe the *G*-orbits of the points (1, 0, 0), (1, 1, 0), (1, 1, 1).
- (2) For each of the points x in the previous part, compute #Stab(x).

Problem 1.2. Let S_4 act on the polynomial ring $\mathbb{C}[r_1, r_2, r_3, r_4]$ by permuting the variables. For each of the following polynomials, compute the size of its stabilizer. You needn't prove your answers to this problem correct.

$$f = r_1$$
 $g = r_1 r_2 + r_3 r_4$ $h = \prod_{1 \le i < j \le 4} (r_i - r_j)$

Problem 1.3. Let G be a group and let a be an element of G. Show that $g \mapsto aga^{-1}$ is a group homorphism $G \to G$.

Problem 1.4. Let G and H be two groups and let $\alpha : G \to H$ and $\beta : G \to H$ be group homomorphisms. For $g \in G$, define $(\alpha\beta)(g) = \alpha(g) * \beta(g)$.

- (1) If H is commutative, show that $\alpha\beta$ is a group homomorphism.
- (2) Give an example of two groups and two homomorphisms such that $\alpha\beta$ is not a homomorphism.

Problem 1.5. Let S_n act on $\mathbb{Q}[x_1, x_2, \dots, x_n]$ in the obvious way. Let $\Delta = \prod_{1 \le i < j \le n} (x_i - x_j) \in \mathbb{Q}[x_1, x_2, \dots, x_n]$. For σ in S_n , let $M(\sigma)$ be the corresponding permutation matrix in $\operatorname{GL}_n(\mathbb{Q})$.

(1) Show that

$$\frac{\sigma(\Delta)}{\Delta} = (-1)^{\left\{\#\{(i,j): 1 \le i < j \le n, \sigma(i) > \sigma(j)\right\}} = \det M(\sigma)$$

(2) We define $\epsilon(\sigma)$ to be given by any of the above formulas. Show that ϵ is a group homomorphism $S_n \to \{\pm 1\}$.

The *alternating group* A_n is defined as the kernel of ϵ .

- (3) Show that S_n is generated by the elements (1j) for $2 \le j \le n$.
- (4) Show that A_n is generated by the elements (12k) for $3 \le k \le n$.

Problem 1.6. In this problem, we will prove the *fundamental theorem of symmetric functions*. Let k be a field, let R be the ring $k[r_1, r_2, ..., r_n]$ and let S be the ring of S_n invariant polynomials in R. For $1 \le d \le n$, define

$$e_d = \sum_{1 \le i_1 < i_2 < \dots < i_d \le n} r_{i_1} r_{i_2} \cdots r_{i_d}$$

The fundamental theorem of symmetric functions states that S is generated (as a k-algebra) by e_1, e_2, \ldots, e_n . We'll write E for the sub-k-algebra of S generated by e_1, e_2, \ldots, e_n , so our goal is to show that E = S.

(1) Show that it is enough to show that, if $f \in S$ is homogenous of degree m, then $f \in E$.

Let *M* be the set of monomials $r_1^{a_1}r_2^{a_2}\cdots r_n^{a_n}$ of degree *m*. Place a total order on *M* by saying that $r_1^{a_1}r_2^{a_2}\cdots r_n^{a_n} > r_1^{b_1}r_2^{b_2}\cdots r_n^{b_n}$ if $a_1 = b_1, a_2 = b_2, \ldots, a_{j-1} = b_{j-1}$ and $a_j > b_j$ for some $1 \le j \le n$. For example, if n = 3 and m = 2, our order is

$$r_1^2 > r_1 r_2 > r_1 r_3 > r_2^2 > r_2 r_3 > r_3^2.$$

We define the *leading term* of a nonzero homogenous degree m polynomial f to be the largest monomial of M whose coefficient is nonzero.

- (2) Let f be a nonzero homogenous degree m polynomial in S and let $r_1^{a_1}r_2^{a_2}\cdots r_n^{a_n}$ be the leading term of f. Show that $a_1 \ge a_2 \ge \cdots \ge a_n$.
- (3) Let $a_1 \ge a_2 \ge \cdots \ge a_n$ with $\sum a_j = m$. Show that there is a polynomial $g \in E$ with leading term $r_1^{a_1} r_2^{a_2} \cdots r_n^{a_n}$.
- (4) Prove that S = E.