I added up the area of my two squares: 1300. The side of one exceeds the side of the other by 10. Babylonian tablet, 2000-1600 BCE, British Museum

Problem 1.1. Let $x^2 + bx + c$ be a polynomial with complex coefficients and let its roots be α_1 and α_2 . Express the following quantities in terms of α_1 and α_2 . In the expressions with a square root, you may choose which square root to use.

$$b \quad c \quad b^2 - 4c \quad \sqrt{b^2 - 4c} \quad \frac{-b + \sqrt{b^2 - 4c}}{2}$$

Problem 1.2. Let the symmetric group S_2 act by switching α_1 and α_2 . Describe the effect of S_2 on each of the expressions you derived in Problem 1.1.

When the cube with the cose beside it / equates itself to some other whole number ... Tartaglia, 1543

Let $\omega = \frac{-1+\sqrt{-3}}{2}$; we recall that $\omega^2 + \omega + 1 = 0$ and $\omega^3 = 1$. Let β_1, β_2 and β_3 be complex numbers. Define:

Problem 1.3. Let S_3 permute $\beta_1, \beta_2, \beta_3$.

- (1) Describe how S_3 acts on $\{\sigma_1, \ \omega\sigma_1, \ \omega^2\sigma_1, \ \sigma_2, \ \omega\sigma_2, \ \omega^2\sigma_2\}$.
- (2) Describe how S_3 acts on $\{\sigma_1^3, \sigma_2^3\}$.
- (3) Show that S_3 fixes s and the coefficients of the quadratic polynomial $y^2 f_1y + f_2 := (y \sigma_1^3)(y \sigma_2^3)$.

Let $(x - \beta_1)(x - \beta_2)(x - \beta_3) = x^3 - e_1x^2 + e_2x - e_3$. To make your lives easier, here are some useful formulas:

$$\begin{array}{c} e_1 = \beta_1 + \beta_2 + \beta_3 \\ e_2 = \beta_1 \beta_2 + \beta_1 \beta_3 + \beta_2 \beta_3 \\ e_3 = \beta_1 \beta_2 \beta_3 \\ e_1^3 = \beta_1^3 + 3\beta_1^2 \beta_2 + 3\beta_1^2 \beta_3 + \beta_1 \beta_2^2 + 6\beta_1 \beta_2 \beta_3 + \beta_1 \beta_3^2 + \beta_2^2 \beta_3 + \beta_2 \beta_3^2 \\ e_1^3 = \beta_1^3 + 3\beta_1^2 \beta_2 + 3\beta_1^2 \beta_3 + 3\beta_1 \beta_2^2 + 6\beta_1 \beta_2 \beta_3 + 3\beta_1 \beta_3^2 + \beta_2^3 + 3\beta_2 \beta_3^2 + \beta_3^3 \\ \hline \sigma_1 \sigma_2 = \beta_1^2 - \beta_1 \beta_2 - \beta_1 \beta_3 + \beta_2^2 - \beta_2 \beta_3 + \beta_3^2 \\ \sigma_1^3 + \sigma_2^3 = 2\beta_1^3 - 3\beta_1^2 \beta_2 - 3\beta_1^2 \beta_3 - 3\beta_1 \beta_2^2 + 12\beta_1 \beta_2 \beta_3 - 3\beta_1 \beta_3^2 + 2\beta_2^3 - 3\beta_2 \beta_3^2 - 3\beta_2 \beta_3^2 + 2\beta_3^3 \\ \end{array}$$

Problem 1.4. Give formulas for the following, as polynomials in e_1 , e_2 , e_3 :

 $s \sigma_1 \sigma_2 f_1 f_2.$

Problem 1.5. Show that σ_1 and σ_2 can be computed from e_1 , e_2 , e_3 using the operations +, -, \times , $\sqrt{}$ and $\sqrt[3]{}$, together with multiplication by rational numbers and the number ω . Show how to likewise compute β_1 , β_2 and β_3 .

Given an equation in which the unknown quantity has four dimensions ... reduce it to another of the third degree, in the following manner ... Descartes, La Géometrié, 1637

Let $\gamma_1, \gamma_2, \gamma_3$ and γ_4 be complex numbers. Set

Problem 1.6. Let S_4 permute $\gamma_1, \gamma_2, \gamma_3, \gamma_4$. Describe how S_4 acts on

- (1) $\{\pm \tau_1, \pm \tau_2, \pm \tau_3\}$
- (2) $\{\tau_1^2, \tau_2^2, \tau_3^2\}$
- (3) Show that S_4 fixes t and the coefficients of the polynomial $(x \tau_1^2)(x \tau_2^2)(x \tau_3^2)$.

Problem 1.7. How would you compute the γ_i from the coefficients of the quartic $\prod (x - \gamma_i)$, using the operations $+, -, \times, \div$ and $\sqrt[n]{-?}$