19. Splitting fields

Definition: Let k be a field, let f(x) be a polynomial in k[x] and let K be an extension field of f. We will say that f splits in K if f factors as a product of linear polynomials in K[x]. We say that K is a splitting field of f if f splits as a product $c \prod (x - \theta_j)$ in K[x] and the field K is generated by k and by the θ_j .

For example, if $k = \mathbb{Q}$ and $\theta_1, \theta_2, \dots, \theta_n$ are the roots of f(x) in \mathbb{C} , then $\mathbb{Q}[\theta_1, \dots, \theta_n]$ is a splitting field of f(x).

Problem 19.1. Let k be a field and let f(x) be a polynomial in k[x]. Show that f has a splitting field. (Please do not use that every field has an algebraic closure. That is a much¹ harder result than this one.)

Problem 19.2. Let

$$f(x) = \left(x - \cos\frac{2\pi}{7}\right) \left(x - \cos\frac{4\pi}{7}\right) \left(x - \cos\frac{8\pi}{7}\right) = \frac{1}{8} \left(8x^3 + 4x^2 - 4x - 1\right).$$

I promise, and you may trust me, that f(x) is irreducible.² Let $K = \mathbb{Q}(\cos \frac{2\pi}{7})$.

- (1) Show that $[K : \mathbb{Q}] = 3$.
- (2) Show that f(x) splits in K. Hint: Use the double angle formula.
- (3) Show that there is an automorphism $\sigma: K \to K$ with $\sigma(\cos \frac{2\pi}{7}) = \cos \frac{4\pi}{7}$.

Problem 19.3. Let *L* be a splitting field for $x^3 - 2$ over \mathbb{Q} . Show that $[L : \mathbb{Q}] = 6$. (Hint: At one point, it will be very useful to use the fact that $\mathbb{Q}[\sqrt[3]{2}]$ is a subfield of \mathbb{R} .)

This is a good time to discuss separable polynomials.

Definition: Let k be a field and let f(x) be a polynomial in k[x]. We say f is *separable* if GCD(f(x), f'(x)) = 1.

Problem 19.4. Let k be a field, let f(x) be a polynomial in k[x] and let K be a field where f splits as $c \prod_{j=1}^{n} (x-\theta_j)$. Show that f is separable if and only if $\theta_1, \theta_2, \ldots, \theta_n$ are distinct.

Problem 19.5. Let k be a field of characteristic zero.

- (1) Show that a polynomial in k[x] is separable if and only if it is square free.
- (2) Show that irreducible polynomials in k[x] are separable.

¹In particular, the fact that every field embeds in an algebraically closed field uses the Axiom of Choice, and this problem does not. ²The most straightforward way to check this is to use the rational root theorem. The slickest is to note that $f(x+1) = \frac{1}{8}(8x^3 + 28x^2 + 28x^2)$

²⁸x + 7) and apply Eisenstein's irreducibility theorem.