Definition: Let $K \subseteq L$ be fields. An *automorphism* of L is a bijection $\sigma : L \to L$ with $\sigma(x+y) = \sigma(x) + \sigma(y)$ and $\sigma(xy) = \sigma(x)\sigma(y)$. An *automorphism of* L *fixing* K is an automorphism of L obeying $\sigma(a) = a$ for all $a \in K$. We write Aut(L) for the automorphisms of L and Aut(L/K) for the automorphisms of L fixing K.

Problem 21.1. Let $K \subseteq L$ be fields. Let f(x) be a polynomial in K[x]; let $\{\theta_1, \theta_2, \dots, \theta_r\}$ be the roots of f in L.

- (1) Show that $\operatorname{Aut}(L/K)$ maps $\{\theta_1, \theta_2, \ldots, \theta_r\}$ to itself.
- (2) Show that stabilizer of θ_i in $\operatorname{Aut}(L/K)$ is $\operatorname{Aut}(L/K(\theta_i))$.

Problem 21.2. Let K be a field, let f be a separable polynomial in K[x], let L be a splitting field for f and let $\{\theta_1, \theta_2, \ldots, \theta_n\}$ be the roots of f in L. Show that the action of $\operatorname{Aut}(L/K)$ on $\{\theta_1, \theta_2, \ldots, \theta_n\}$ gives an injection $\operatorname{Aut}(L/K) \hookrightarrow S_n$.

Problem 21.3. Let K, f, L and $\{\theta_1, \theta_2, \ldots, \theta_n\}$ be as in Problem 21.2. Let g(x) be an irreducible factor of f(x) in K[x] and renumber the θ 's so that $\{\theta_1, \theta_2, \ldots, \theta_m\}$ are the roots of g in L. Show that $\{\theta_1, \theta_2, \ldots, \theta_m\}$ is the Aut(L/K)-orbit of θ_1 in L. Hint: Apply Problem 20.4 to the diagram

Problem 21.4. Let *L* be the splitting field of $x^3 - 2$ over \mathbb{Q} . Show that $\operatorname{Aut}(L/\mathbb{Q}) \cong S_3$. **Problem 21.5.** Let $L = \mathbb{Q}(\cos \frac{2\pi}{7})$. Show that $\operatorname{Aut}(L/\mathbb{Q}) \cong C_3$.