22. GALOIS EXTENSIONS

Problem 22.1. Let $K \subseteq L$ be a field extension of finite degree. Let $\theta \in L$ and let g(x) be the minimal polynomial of θ over K.

- (1) Show that the size of the $\operatorname{Aut}(L/K)$ orbit of θ is $\leq [K[\theta] : K]$.
- (2) Show that we have equality if and only if g is separable and g splits in L.

Problem 22.2. Let $K \subseteq L$ be a field extension of finite degree. Show that $\# \operatorname{Aut}(L/K) \leq [L:K]$.

It is natural to ask when we have equality in Problem 22.2. This is answered by the following:

Theorem/Definition Let L/K be a field extension of finite degree. The following are equivalent:

(1) We have $\# \operatorname{Aut}(L/K) = [L : K].$

(2) The fixed field of $\operatorname{Aut}(L/K)$ is K.

(3) For every $\theta \in L$, the minimal polynomial of θ over K is separable and splits in L.

(4) L is the splitting field of a separable polynomial $f(x) \in K[x]$.

A field extension L/K which satisfies these equivalent definitions is called *Galois*.

The next four problems prove this theorem.

Problem 22.3. Show that (1) implies (2).

Problem 22.4. Let $\theta \in L$ and let $\{\theta_1, \theta_2, \dots, \theta_r\}$ be the orbit of θ under $\operatorname{Aut}(L/K)$. Let $f(x) = \prod_i (x - \theta_i)$.

- (1) Assuming condition (2), Show that $f(x) \in K[x]$.
- (2) Continuing to assume (2), show that f(x) is the minimal polynomial of θ over K.
- (3) Deduce that (2) implies (3).

Remark. The fact that, in a Galois extension, the minimal polynomial of θ is $\prod_{\theta' \in Aut(L/K)\theta} (x - \theta')$ will be useful many times again.

Problem 22.5. Show that (3) implies (4).

Problem 22.6. Show that (4) implies (1).

Definition When L/K is Galois, we denote Aut(L/K) by Gal(L/K) and call it the *Galois group of* L over K.