Recall:

Theorem/Definition Let L/K be a field extension of finite degree. The following are equivalent:

- (1) We have $\# \operatorname{Aut}(L/K) = [L:K]$.
- (2) The fixed field of $\operatorname{Aut}(L/K)$ is K.
- (3) For every $\theta \in L$, the minimal polynomial of θ over K is separable and splits in L.
- (4) L is the splitting field of a separable polynomial $f(x) \in K[x]$.

A field extension L/K which satisfies these equivalent definitions is called *Galois*.

Given a subfield F with $K \subseteq F \subseteq L$, we write $\operatorname{Stab}(F)$ for the subgroup of G fixing F; given a subgroup H of $\operatorname{Gal}(L/K)$, we write $\operatorname{Fix}(H)$ for the subfield of L fixed by H. Our next main goal will be to show:

The fundamental Theorem of Galois theory Let L/K be a Galois extension with Galois group G. The maps Stab and Fix are inverse bijections between the set of subgroups of G and the set of intermediate fields F with $K \subseteq F \subseteq L$. Moreover, if $F_1 \subseteq F_2$, then $\operatorname{Stab}(F_1) \supseteq \operatorname{Stab}(F_2)$ and $[\operatorname{Stab}(F_1) : \operatorname{Stab}(F_2)] = [F_2 : F_1]$. If $H_1 \subseteq H_2$ then $\operatorname{Fix}(H_1) \supseteq \operatorname{Fix}(H_2)$ and $[\operatorname{Fix}(H_1) : \operatorname{Fix}(H_2)] = [H_2 : H_1]$.

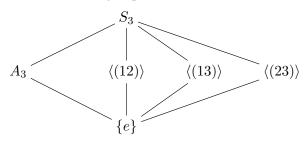
We start by proving some basic results about Fix and Stab.

Problem 25.1. Let L/K be Galois and let F be a field with $K \subseteq F \subseteq L$. Show that L/F is Galois and identify $\operatorname{Gal}(L/F)$ with a subgroup of $\operatorname{Gal}(L/K)$.

- **Problem 25.2.** (1) Show that, if $F_1 \subseteq F_2$ then $\operatorname{Stab}(F_1) \supseteq \operatorname{Stab}(F_2)$. (2) Show that, if $H_1 \subseteq H_2$ then $\operatorname{Fix}(H_1) \supseteq \operatorname{Fix}(H_2)$.
- **Problem 25.3.** (1) Show that $Stab(Fix(H)) \supseteq H$. (2) Show that $Fix(Stab(F)) \supseteq F$.

The Fundamental Theorem tells us that both of the \supseteq 's in Problem 25.3 are actually equality, but we don't know that yet.

We now give examples. Here is a table of the subgroups of S_3 :



Problem 25.4. Let $L = \mathbb{Q}(x_1, x_2, x_3)$, let S_3 act on L by permuting the variables and let $K = Fix(S_3)$. Describe the subfield of L fixed by each of the subgroups of S_3 .

Problem 25.5. Let L be the splitting field of $x^3 - 2$ over \mathbb{Q} . We number the roots of $x^3 - 2$ as $\sqrt[3]{2}$, $\omega \sqrt[3]{2}$ and $\omega^2 \sqrt[3]{2}$, where ω is a primitive cube root of 1. Described the subfield of L fixed by each of the subgroups of S_3 .

Now we prove the theorem!

Problem 25.6. Let L/K be a Galois extension. Let F be a field with $K \subseteq F \subseteq L$.

- (1) Show that L/F is Galois.
- (2) Show that $\operatorname{Aut}(L/F)$ is the subgroup $\operatorname{Stab}(F)$ of $\operatorname{Aut}(L/K)$.
- (3) Show that Fix(Stab(F)) = F. Hint: What can you say about [L : Fix(Stab(F))]?

Problem 25.7. Let L/K be a Galois extension with Galois group G. Let H be a subgroup of G and let F = Fix(H). Show that Stab(Fix(H)) = H.

Problem 25.8. Check the remaining claims of the Fundamental Theorem.