You have now proved:

The Fundamental Theorem of Galois theory Let L/K be a Galois extension with Galois group G. The maps Stab and Fix are inverse bijections between the set of subgroups of G and the set of intermediate fields F with $K \subseteq F \subseteq L$. Moreover, if $F_1 \subseteq F_2$, then $\operatorname{Stab}(F_1) \supseteq \operatorname{Stab}(F_2)$ and $[\operatorname{Stab}(F_1) : \operatorname{Stab}(F_2)] = [F_2 : F_1]$. If $H_1 \subseteq H_2$ then $\operatorname{Fix}(H_1) \supseteq \operatorname{Fix}(H_2)$ and $[\operatorname{Fix}(H_1) : \operatorname{Fix}(H_2)] = [H_2 : H_1]$.

We proceed to corollaries and related results.

Problem 26.1. Let L/K be a Galois extension with Galois group G. Let H be a subgroup of G with corresponding subfield F.

- (1) For $\sigma \in G$, show that the subfield $\sigma(F)$ corresponds to the subgroup $\sigma H \sigma^{-1}$.
- (2) Show that the following are equivalent:
 - The extension F/K is Galois.
 - For all $\theta \in F$ and all $\sigma \in G$, we have $\sigma(\theta) \in F$.
 - For all $\theta \in F$ and all $\sigma \in G$, we have $\theta \in \sigma(F)$.
 - The subgroup H of G is normal.
- (3) Suppose that the above conditions hold. Show that $Gal(F/K) \cong G/H$.

Problem 26.2. Let's do an old QR problem! Let $\zeta \in \mathbb{C}$ be a root of unity. Show that $2^{1/3} \notin \mathbb{Q}(\zeta)$.

Problem 26.3. Let K be a field and let L_1, L_2, \ldots, L_r be finite Galois extensions of K.

- (1) Show that there is a Galois extension M of K such that all of the L_j embed into M and the L_j generate M as a field. (Hint: Take the splitting field of an appropriate polynomial.)
- (2) Show that $\operatorname{Gal}(M/K)$ is isomorphic to a subgroup of $\prod \operatorname{Gal}(L_j/K)$.

Problem 26.4. Let L/K be a Galois extension with Galois group G. Suppose that G is a 2-group.

- (1) Show that there a chain of subfields $K = K_0 \subset K_1 \subset \cdots \subset K_N = L$ with $[K_{j+1} : K_j] = 2$.
- (2) Suppose that the characteristic of K is not 2. Show that, in the preceding chain, we can find elements $\phi_j \in K_j$ such that $K_{j+1} \cong K_j(\sqrt{\phi_j})$.
- (3) (Characterization of constructible numbers) Let θ be algebraic over \mathbb{Q} and let *L* be the Galois closure of $\mathbb{Q}(\theta)$. Show that θ is constructible¹ if and only if $[L : \mathbb{Q}]$ is a power of 2.
- (4) (Gauss's construction of the 17-gon) Show that a primitive 17-th root of unity is constructible.

Problem 26.5. The following problem is on the homework, check that everyone can solve it: Let K be an infinite field, let V be a finite dimensional K-vector space and let H_1, H_2, \ldots, H_N be finitely many proper K-subspaces of V. Show that there is an element of V not in any H_j .

Problem 26.6. Let L/K be a Galois extension.

- (1) Show that there are only finitely many fields F with $K \subseteq F \subseteq L$.
- (2) Assume furthermore that K is infinite. For every F with $K \subseteq F \subseteq L$, show that there is an element $\theta \in F$ which is not in F' for any $K \subseteq F' \subsetneq F$.
- (3) (The primitive element theorem) Let K be an infinite field and let L be a separable extension of finite degree. Then there is $\theta \in L$ such that $L = K(\theta)$.

Remark. Given a finite degree field extension L/K, an element θ of L such that $L = K(\theta)$ is called **primitive**. We have just show that separable extensions of infinite fields have primitive elements. It is also true that, if L and K are finite, then L has a primitive element; the simplest proof I know is that the multiplicative group L^{\times} will be cyclic and a generator for this group clearly must be primitive. The simplest example of an extension without a primitive element is $\mathbb{F}_p(x, y)/\mathbb{F}_p(x^p, y^p)$: Every element θ of $\mathbb{F}_p(x, y)$ has $\theta^p \in \mathbb{F}_p(x^p, y^p)$, so any such element only generates an extension of degree p inside this degree p^2 extension.

¹To make this problem easier, I will allow you to take square roots of negative, and more generally of complex numbers, when discussing constructibility.