27. SOLVABLE EXTENSIONS

Throughout this worksheet, let F be a field of characteristic zero.

Problem 27.1. Let K be the splitting field of $x^n - 1$ over F. Show that Gal(K/F) is abelian.

Problem 27.2. Let $c \in F$ and let K be the splitting field of $x^n - c$ over F. Show that Gal(K/F) is solvable.

A field extension K/F is called **solvable** if there is a Galois extension L/F with $K \subseteq L$ and Gal(L/F) solvable.

Problem 27.3. Let K/F be a solvable extension. Let K' be an extension of K which is of the form $K[\theta]$ where $\theta^m \in K$ for some $\theta \in K'$. Show that K'/F is solvable.

Problem 27.4. Let F be a field and let K_1/F , K_2/F , ..., K_r/F be solvable extensions of F. Show that there is a solvable extension M of F into which all the K_i embed. (Hint: See Problem 26.3.)

Problem 27.5. (The unsolvability of the quintic) Let f(x) be a degree 5 separable polynomial in F[x] and let L be the splitting field of f over F. Suppose that Gal(L/F) is A_5 or S_5 . Show that L is not contained in any solvable extension of F.

The point of the next problem is to drive home that we have completed the story of the quintic.

Problem 27.6. Let f(x) be a degree 5 separable polynomial in $\mathbb{Q}[x]$ and let L be the splitting field of f over \mathbb{Q} . Suppose that $\operatorname{Gal}(L/\mathbb{Q})$ is A_5 or S_5 . Show that the roots of f cannot be expressed in terms of rational numbers using $+, -, \times, \div$ and $\sqrt[m]{}$.