28. KUMMER'S THEOREM AND GALOIS'S CRITERION FOR RADICAL EXTENSIONS

On the previous worksheet we showed that, if we adjoin elements to a field by taking *m*-th roots, we will never leave the solvable fields. On this worksheet, we will prove a converse.

Here is the set up for problems 28.1 through 28.4: Let K be a field where $n \neq 0$ and let $\zeta \in K$ be a primitive n-th root of unity. Let L/K be a Galois extension whose Galois group is cyclic of order n and let g generate Gal(L/K).

Problem 28.1. Show that, as a K-vector space, L splits up as $\bigoplus_{j=0}^{n-1} L_j$ where $L_j := \{x \in L : g(x) = \zeta^j x\}$.

Problem 28.2. Let $J \subseteq \mathbb{Z}/n\mathbb{Z}$ be $\{j : L_j \neq (0)\}$.

- (1) Show that J is a subgroup of $\mathbb{Z}/n\mathbb{Z}$.
- (2) Show that J = Z/nZ. (Hint: All subgroups of Z/nZ are of the form dZ/nZ for some divisor d of n. Think about g^{n/d}.)
- (3) Show that $\dim_K L_j = 1$

Problem 28.3. With notation as in the previous problems, let $\alpha \in L_j$ and $\beta \in L_k$. Show that $\alpha \beta \in L_{j+k}$.

Problem 28.4. Let $\alpha \in L_1$ and put $\theta = \alpha^n$. Show that $L = K(\theta^{1/n})$.

You have now proved:

Kummer's Theorem Let K be a field where $n \neq 0$ and suppose that K contains a primitive n-th root of unity. Let L/K be a Galois extension whose Galois group is cyclic of order n. Then $L = K(\theta^{1/n})$ for some $\theta \in K$.

Problem 28.5. Let L/K be a solvable extension Galois extension with solvable Galois group of order N. Suppose that $N \neq 0$ in K and that K contains a primitive N-th root of unity. Show that there is a chain of subfields $K = K_0 \subset K_1 \subset \cdots \subset K_r = L$ such that $K_{j+1} = K_j(\theta_j^{1/d_j})$ for some $\theta_j \in K_j$ and some d_j dividing N.

We are now ready to prove

Galois's characterization of equations solvable by radicals: Let θ be algebraic over \mathbb{Q} and let K be the Galois closure of $\mathbb{Q}(\theta)$. There is a formula for θ using $+, -, \times, \div, \checkmark$ if and only if $Gal(K/\mathbb{Q})$ is solvable.

We have already shown that, if a radical formula for θ exists, then $Gal(K/\mathbb{Q})$ is solvable. We now prove the converse:

Problem 28.6. Let K be a Galois extension of \mathbb{Q} with $\operatorname{Gal}(K/\mathbb{Q})$ solvable of order N.

- (1) Show that there is a solvable extension L of \mathbb{Q} that contains both K and a primitive N-th root of unity.
- (2) Finish the proof of Galois's criterion.