
29. SYMMETRIC POLYNOMIALS AND COMPUTING GALOIS GROUPS

This worksheet attempts to address two questions from past classes:

(1) “Is there an algorithm to compute Galois groups?” and
(2) What is the relationship between symmetries of polynomials and Galois symmetries?

It will be important to remain a careful distinction between formal polynomials, and those polynomials evaluated at
specific algebraic numbers. I’ll use capital letters for the former, and for the fields that contain them, and lower case
letters for the latter.

Let f(x) = xn − e1x
n−1 + e2x

n−2 − · · · ± en be a separable polynomial in Q[x], let r1, . . . , rn be the roots of f in
C and let ` = Q(r1, . . . , rn). So we identify Gal(`/Q) with a subgroup of Sn.

Let L = Q(R1, . . . , Rn) and let K be the field of symmetric rational functions in L, so K = Q(E1, . . . , En) where
the Ej are the elementary symmetric polynomials, so

∏
(x−Rj) = xn − E1x

n−1 + E2x
n−2 − · · · ± En.

Let H ∈ Q[R1, . . . , Rn]. Let Γ be the subgroup {γ ∈ Sn : H(R1, . . . , Rn) = H(Rγ(1), . . . , Rγ(n))}. As an
example, if H = R2

1R2 +R2
2R3 +R2

3R1, then Γ = 〈(123)〉. Let h be the complex number H(r1, . . . , rn).

Problem 29.1. Suppose that Gal(`/Q) ⊆ Γ. Show that h ∈ Q.

Problem 29.2. Suppose that, for σ 6∈ Γ, we have H(r1, . . . , rn) 6= H(rσ(1), . . . , rσ(n)). Then show that h ∈ Q if
and only if Gal(`/Q) ⊆ Γ.

So, we can test whether Gal(`/Q) is contained in a particular subgroup of Sn by testing whether or notH(r1, . . . , rn) ∈
Q, subject to needing the extra hypothesis that, if H(R1, . . . , Rn) 6= H(Rσ(1), . . . , Rσ(n)) then H(r1, . . . , rn) 6=
H(rσ(1), . . . , rσ(n)).

The next problems discuss two approaches to teach whether h ∈ Q. As our running example, we will look at the
cubics x3− 4x− 1 and x3 +x2− 2x− 1 and test whether their Galois groups are contained in the subgroup 〈(123)〉
of S3. We’ll look at the polynomial H(R1, R2, R3) = R2

1R2 +R2
2R3 +R2

3R1 which, indeed, has symmetry group
〈(123)〉.

First approach

Problem 29.3. Suppose that all the ej (the coefficients of f(x)) are integers and let H ∈ Z[R1, . . . , Rn]. Show that
h ∈ Q if and only if h ∈ Z.

This is useful, because it means that we can just compute h(r1, . . . , rn) to enough numerical accuracy to determine
whether or not it is an integer.

Example: We have x3 − 4x− 1 = (x− α1)(x− α2)(x− α3) and x3 + x2 − 2x− 1 = (x− β1)(x− β2)(x− β3)
where (α1, α2, α3) = (−1.8608,−0.2541, 2.1149) and (β1, β2, β3) = (−1.8019,−0.4450, 1.2470). We compute

α2
1α2 + α2

2α3 + α2
3α1 = −9.066 β2

1β2 + β2
2β3 + β2

3β1 = −4.000.

Thus, in the first case, the Galois group cannot be contained in 〈(123)〉 and, in the second, it is highly likely to be.
Second approach

G(x) =
∏

σ∈Γ\Sn

(
x−H(Rσ(1), . . . , Rσ(n))

)
.

Here the product if over cosets of Γ\Sn, choosing one element from each coset.

Problem 29.4. Explain why the product is well defined, independent of the choice of element from each coset.

Problem 29.5. Show that the coefficients of G lie in Q[E1, . . . , En] (this is just quoting a very old problem).

Let g(x) be the polynomial in Q[x] that we get by evaluating the coefficients of G at Ej = ej .

Problem 29.6. Show that h is a root of g. Conclude that, if Gal(`/Q) ⊆ Γ, then g has a rational root.

Problem 29.7. Suppose g has a rational root of multiplicity 1. Show that there is some σ ∈ Sn such that Gal(`/Q) ⊆
σΓσ−1.



Our running example: We have

(x−R2
1R2 −R2

2R3 −R2
3R1)(x−R2

2R1 −R2
3R2 −R2

1R3) = x2 − (E1E2 − 3E3)x+ (E3
2 − 6E1E2E3 +E3

1E3).

EvaluatingE1E2−3E3 andE3
2−6E1E2E3+E3

1E3 at the coefficients of our two example cubics gives: x2+3x−55
and x2 − x− 12 respectively. The first does not have a rational root and the second does, so the splitting field of the
first cubic does not have Galois group contained in 〈(123)〉 and the second does. In approach, all computations are
done with rational numbers, so there is no fear of round off error. However, the computations are much larger, and
you have to deal with the complication of finding an Sn-conjugate of the correct group rather than the group itself.

Example – the alternating group: Homework problem 9.4 was an example of this approach: Let ∆ =
∏
i<j(Ri −

Rj) and let Φ = ∆2, so Φ is a symmetric polynomial. The symmetry group of ∆ is An, and the minimal polynomial
of ∆ is x2 − Φ, so we get that Gal(`/Q) ⊂ An if and only if Φ(r1, . . . , rn) is a square. The polynomial Φ is called
the discriminant.
Example – constructibility of roots of quartics: Let Γ be the subgroup 〈(12), (34), (13)(24)〉 of S4; this is a
2-Sylow subgroup. We have

(y−R1R2−R3R4)(y−R1R3−R2R4)(y−R1R4−R2R3) = y3−E2y
2+(E1E3−E4)y−(E3

1 +E2
1E4−4E2E4).

Let ` be the splitting field of a quartic x4 − e1x
3 + e2x

2 − e3x+ e4. Then Gal(`/Q) is contained in a conjugate of
Γ if and only if Gal(`/Q) is a 2-group (by the second Sylow theorem). And Γ is a 2-group if and only if the roots
of x4 − e1x

3 + e2x
2 − e3x+ e4 are constructible. So we deduce that the roots of x4 − e1x

3 + e2x
2 − e3x+ e4 are

constructible if and only if y3 − e2y
2 + (e1e3 − e4)y − (e3

1 + e2
1e4 − 4e2e4) has a rational root.
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