Definition. Let G be a group and let X be a set. An *action* of G on X is a map $* : G \times X \to X$ obeying $(g_1 * g_2) * x = g_1 * (g_2 * x)$ and e * x = x.

Depending on context, we may denote * by *, \times , \cdot or no symbol at all. This notion of an action can also be called a "left action"; a "right action" is a map $*: X \times G \to X$ obeying $x * (g_2 * g_1) = (x * g_2) * g_1$.

Problem 4.1. Let $G \times X \to X$ be a left action of G on X. Define a map $X \times G \to X$ by $(x,g) \mapsto g^{-1}x$. Show that this is a right action of G on X.

Problem 4.2. Let S_X be the group of bijections $X \to X$, with the group operation of composition. Show that an action of G on X is the same as a group homomorphism $G \to S_X$.

Definition. Let G be a group which acts on a set X. For $x \in X$, the *stabilizer* Stab(x) of x is $\{g \in G : g * x = x\}$. For $g \in G$, the *fixed points* Fix(g) of g are $\{x \in X : g * x = x\}$.

Problem 4.3. With G, X and x as above, show that Stab(x) is a subgroup of X.

Problem 4.4. Let G, X and x be as above and let $g \in G$. Show that $Stab(gx) = g Stab(x)g^{-1}$.

Definition. For G, X and x as above, the *orbit* of x, written Gx, is $\{gx : g \in G\}$.

Problem 4.5. (The Orbit-Stabilizer theorem) If G is finite, show that $\#(G) = \#(Gx)\#(\operatorname{Stab}(x))$.

The set of orbits of G on X is denoted $G \setminus X$. If we have a right action, we write X/G.

Problem 4.6. (Burnside's Lemma¹) Let G be a finite group and let X be a finite set on G acts. Show that

$$\frac{1}{\#G}\sum_{g\in G} \#\operatorname{Fix}(g) = \#(G\backslash X).$$

Definition. Let G be a group and let H be a subgroup. Let H act on G by h * g = hg. The orbits of this action are called the *right cosets* of H in G. The *left cosets* are the orbits for the right action $G * H \to G$. The number of cosets of H in G is called the *index* of H in G and written [G : H].

Problem 4.7. Show that G has a left action on the set G/H of left cosets, such that $g_1 * (g_2H) = (g_1 * g_2)H$. Show that the stabilizer of the coset eH is H.

Problem 4.8. (Lagrange's Theorem²) Let G be a finite group and let H be a subgroup. Show that #(H) divides #(G).

Problem 4.9. Let G be a finite group with #(G) = N. Let $g \in G$ and let the group generated by g have n elements.

- (1) Show that n divides N.
- (2) Show that $g^N = 1$.

¹Proved by Ferdinand Georg Frobenius.

²Proved by Camille Jordan.