
1. THE QUADRATIC, CUBIC AND QUARTIC FORMULAS

I added up the area of my two squares: 1300. The side of one exceeds the side of the other by 10.
Babylonian tablet, 2000-1600 BCE, British Museum

Problem 1.1. Let x2 + bx + c be a polynomial with complex coefficients and let its roots be α1 and α2. Express
the following quantities in terms of α1 and α2. In the expressions with a square root, you may choose which square
root to use.
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√
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.

Problem 1.2. Let the symmetric group S2 act by switching α1 and α2. Describe the effect of S2 on each of the
expressions you derived in Problem 1.1.

When the cube with the cose beside it / equates itself to some other whole number . . . Tartaglia, 1543

Let ω = −1+
√
−3

2 ; we recall that ω2 + ω + 1 = 0 and ω3 = 1. Let β1, β2 and β3 be complex numbers. Define:

s = β1 + β2 + β3

σ1 = β1 + ωβ2 + ω2β3

σ2 = β1 + ω2β2 + ωβ3

Problem 1.3. Let S3 permute β1, β2, β3.

(1) Describe how S3 acts on {σ1, ωσ1, ω
2σ1, σ2, ωσ2, ω

2σ2}.
(2) Describe how S3 acts on {σ3

1, σ
3
2}.

(3) Show that S3 fixes s and the coefficients of the quadratic polynomial y2 − f1y + f2 := (y − σ3
1)(y − σ3

2).

Let (x− β1)(x− β2)(x− β3) = x3 − e1x
2 + e2x− e3. To make your lives easier, here are some useful formulas:
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e2 = β1β2 + β1β3 + β2β3 e2
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Problem 1.4. Give formulas for the following, as polynomials in e1, e2, e3:

s σ1σ2 f1 f2.

Problem 1.5. Show that σ1 and σ2 can be computed from e1, e2, e3 using the operations +, −, ×, √ and 3
√ ,

together with multiplication by rational numbers and the number ω. Show how to likewise compute β1, β2 and β3.

Given an equation in which the unknown quantity has four dimensions . . . reduce it to another of the third degree,
in the following manner . . . Descartes, La Géometrié, 1637

Let γ1, γ2, γ3 and γ4 be complex numbers. Set

t = γ1 + γ2 + γ3 + γ4

τ1 = γ1 + γ2 − γ3 − γ4

τ2 = γ1 − γ2 + γ3 − γ4

τ3 = γ1 − γ2 − γ3 + γ4

Problem 1.6. Let S4 permute γ1, γ2, γ3, γ4. Describe how S4 acts on

(1) {±τ1,±τ2,±τ3}
(2) {τ2

1 , τ
2
2 , τ

2
3 }

(3) Show that S4 fixes t and the coefficients of the polynomial (x− τ2
1 )(x− τ2

2 )(x− τ2
3 ).

Problem 1.7. How would you compute the γi from the coefficients of the quartic
∏

(x − γi), using the operations
+, −, ×, ÷ and n

√ ?



2. A WEAK VERSION OF UNSOLVABILITY OF THE QUINTIC

Perhaps it will not be so difficult to prove, with all rigor, the impossibility for the fifth degree.
Karl Freidrich Gauss, 1799

One of the highlights of this course will be the proof of the unsolvability of the quintic. This worksheet proves a
weaker version of this result.

Let L be the field of rational functions C(r1, r2, . . . , r5). Define e1, e2, e3, e4, e5 ∈ L as the coefficients in

(x− r1)(x− r2)(x− r3)(x− r4)(x− r5) = x5 − e1x
4 + e2x

3 − e3x
2 + e4x− e5.

Theorem (Ruffini). Starting from e1, e2, . . . , e5, it is impossible to obtain the elements r1, r2, . . . , r5 of L by the
operations +, −, ×, ÷, n

√ , under the condition that, every time we take an n-th root, we must stay in L.

Let S5 act on L by permuting the ri. Let K be the subfield of L fixed by S5.

Problem 2.1. Show that the ej are in K.

Problem 2.2. Set ∆ =
∏
i<j(ri − rj). Show that ∆2 ∈ K but ∆ 6∈ K.

We define A5 to be the subgroup of S5 fixing ∆. We will often write permutations using cycle notation: (i1i2 · · · ik)
means the permutation which cycles i1 7→ i2 7→ · · · 7→ ik 7→ i1 and fixes everything not in {i1, i2, . . . , ik}.

Problem 2.3. Check that (123), (124) and (125) ∈ A5.

Problem 2.4. Verify the following identities in the group A5:

(123)3 = (124)3 = (125)3 = Id ((123)(124))2 = ((123)(125))2 = ((124)(125))2 = Id .

Problem 2.5. Show that there are no nontrivial group homomorphisms from A5 to an abelian group. You may
assume that (123), (124) and (125) generate A5; you’ll check this on the problem set.

Let F be the subfield of L fixed by A5.

Problem 2.6. Suppose that f ∈ L is nonzero, and fn ∈ F . For σ ∈ A5, show that σ(f)
f ∈ C×.

Problem 2.7. Let f be as in Problem 2.6. For σ ∈ A5, define χf (σ) = σ(f)
f . Show that χf : A5 → C× is a group

homomorphism.

Problem 2.8. Show that, if f ∈ L and fn ∈ F , then f ∈ F .

Problem 2.9. Prove Ruffini’s Theorem.

History, and plan of the course: Paolo Ruffini, Teoria generale delle equazioni, 1799 gave what, in modern
language, is a proof of this result. His work was difficult to understand, and the assumption that one would not
leave C(r1, . . . , r5) when extracting n-th roots was only stated implicitly. Calling this result Ruffini’s Theorem is
not standard, but seems appropriate.

Abel replaced the use of rational functions with multivalued complex analytic functions of the rj . He proved the
corresponding result with no restriction on taking roots in 1824, just four years prior to his death of tuberculosis at
age 26. Because the foundations of complex analysis were not yet settled, his work was also hard to follow. He died
only four years later of tuberculosis. The unsolvability of the quintic is now known as the Abel-Ruffini Theorem.

Neither Abel nor Ruffini was able to prove that the roots of a particular quintic with, for example, rational coeffi-
cients, were not expressible in terms of the coefficients of that quintic; that would wait for Galois in 1831, just a year
before his death in a duel at age 20. Our course will follow the ideas of Galois.

We can see from these early attempts that the lack of a notion of adjoining an n-th root to an arbitrary field, without
some ambient field to work inside, was a major obstacle to clear proofs. For this reason, we will be studying abstract
fields. That will require replacing the groups Sn and An with general abstract groups, so first we will study groups.

Abel has left mathematicians enough to keep them busy for 500 years. Atttributed to Charles Hermite.



3. GROUPS

Definition. A group G is a set with a binary operation ∗ : G×G→ G obeying the properties
(1) There is an element 1 of G such that 1 ∗ g = g ∗ 1 = g for all g ∈ G.
(2) For all g ∈ G, there is an element g−1 obeying g ∗ g−1 = g−1 ∗ g = 1.
(3) For all g1, g2, g3 ∈ G, we have (g1 ∗ g2) ∗ g3 = g1 ∗ (g2 ∗ g3).

Given a group G, a subgroup of G is a subset containing 1 and closed under ∗ and g 7→ g−1.

Depending on context, we may denote ∗ by ∗, ×, · or no symbol at all, and we may denote 1 as 1, e or Id.

Problem 3.1. Show that a group G only has one element 1 obeying the condition (1).

Problem 3.2. Let G be a group and let g ∈ G. Show that G only has one element obeying the condition (2).

Definition. Given two groups G and H , a group homomorphism is a map φ : G → H obeying φ(g1 ∗ g2) =
φ(g1) ∗ φ(g2). A bijective group homomorphism is called an isomorphism and two groups are called isomorphic if
there is an isomorphism between them.

A group homomorphism can also be called a “map of groups” or a “group map”.

Problem 3.3. Let φ : G→ H be a group homomorphism. Show that φ(1) = 1 and φ(g−1) = φ(g)−1.

Problem 3.4. Let φ : G→ H be a group homomorphism.

(1) The image of φ is Im(φ) := {φ(g) : g ∈ G}. Show that Im(φ) is a subgroup of G.
(2) The kernel of φ is Ker(φ) := {g ∈ G : φ(g) = 1}. Show that Ker(φ) is a subgroup of G.

Definition. Given two groups G and H , the product group is the group whose underlying set is G × H , with
multiplication structure (g1, h1) ∗ (g2, h2) = (g1g2, h1h2).

Problem 3.5. Let G and H be two groups and let π1 and π2 be the projections G×H → G and G×H → H onto
the first and second factor. Show that G×H obeys the universal property of products, meaning that, for any group
F with maps φ1 : F → G and φ2 : F → H , there is a unique map (φ1, φ2) : F → G ×H such that the diagram
below commutes:

F
(φ1,φ2)

##

φ1

!!

φ2

$$

G×H π1 //

π2
��

G

H

Definition. A group G is called abelian if g1 ∗ g2 = g2 ∗ g1 for all g1, g2 ∈ G.

If G is abelian, we will often denote ∗ by + and 1 by 0. We will never use these notations for a non-abelian group.

Problem 3.6. Let G be a group. Show that G is abelian if and only if:

(1) The map g 7→ g−1 is a group homomorphism.
(2) The map g 7→ g2 is a group homomorphism.
(3) The map µ : G×G→ G by µ(g, h) = g ∗ h is a group homomorphism.

We’ll toss in one more definition:

Definition. For g ∈ G, the conjugacy class of g is the set Conj(g) := {hgh−1 : h ∈ G}.



4. GROUP ACTIONS

Definition. Let G be a group and let X be a set. An action of G on X is a map ∗ : G × X → X obeying
(g1 ∗ g2) ∗ x = g1 ∗ (g2 ∗ x) and e ∗ x = x.

Depending on context, we may denote ∗ by ∗, ×, · or no symbol at all. This notion of an action can also be called a
“left action”; a “right action” is a map ∗ : X ×G→ X obeying x ∗ (g2 ∗ g1) = (x ∗ g2) ∗ g1.

Problem 4.1. Let G ×X → X be a left action of G on X . Define a map X × G → X by (x, g) 7→ g−1x. Show
that this is a right action of G on X .

Problem 4.2. Let SX be the group of bijections X → X , with the group operation of composition. Show that an
action of G on X is the same as a group homomorphism G→ SX .

Definition. Let G be a group which acts on a set X . For x ∈ X , the stabilizer Stab(x) of x is {g ∈ G : g ∗ x = x}.
For g ∈ G, the fixed points Fix(g) of g are {x ∈ X : g ∗ x = x}.

Problem 4.3. With G, X and x as above, show that Stab(x) is a subgroup of X .

Problem 4.4. Let G, X and x be as above and let g ∈ G. Show that Stab(gx) = g Stab(x)g−1.

Definition. For G, X and x as above, the orbit of x, written Gx, is {gx : g ∈ G}.

Problem 4.5. (The Orbit-Stabilizer theorem) If G is finite, show that #(G) = #(Gx)#(Stab(x)).

The set of orbits of G on X is denoted G\X . If we have a right action, we write X/G.

Problem 4.6. (Burnside’s Lemma1) Let G be a finite group and let X be a finite set on G acts. Show that
1

#G

∑
g∈G

#Fix(g) = #(G\X).

Definition. Let G be a group and let H be a subgroup. Let H act on G by h ∗ g = hg. The orbits of this action
are called the right cosets of H in G. The left cosets are the orbits for the right action G ∗H → G. The number of
cosets of H in G is called the index of H in G and written [G : H].

Problem 4.7. Show that G has a left action on the set G/H of left cosets, such that g1 ∗ (g2H) = (g1 ∗ g2)H . Show
that the stabilizer of the coset eH is H .

Problem 4.8. (Lagrange’s Theorem2) Let G be a finite group and let H be a subgroup. Show that #(H) divides
#(G).

Problem 4.9. LetG be a finite group with #(G) = N . Let g ∈ G and let the group generated by g have n elements.

(1) Show that n divides N .
(2) Show that gN = 1.

1Proved by Ferdinand Georg Frobenius.
2Proved by Camille Jordan.



5. NORMAL SUBGROUPS, QUOTIENT GROUPS, SHORT EXACT SEQUENCES

Problem 5.1. Let G be a group and let N be a subgroup. Show that the following are equivalent:

(1) For all g ∈ G, we have gNg−1 = N .
(2) All elements of G/N have the same stabilizer, for the left action of G on G/N .
(3) Every left coset of N in G is also a right coset.
(4) If g1N = g′1N and g2N = g′2N , then g1g2N = g′1g

′
2N .

Definition. A subgroup N obeying the equivalent conditions of Problem 5.1 is called a normal subgroup of G. We
write N E G to indicate that N is a normal subgroup of G.

Problem 5.2. Let G be S3. Which of the following subgroups are normal?

(1) The subgroup generated by (12).
(2) The subgroup generated by (123).

Problem 5.3. Let G be a group and let N be a normal subgroup of G.

(1) Prove or disprove: Let α : F → G be a group homomorphism. Then α−1(N) is normal in F .
(2) Prove of disprove: Let β : G→ H be a group homomorphism. Then β(N) is normal in H .
(3) At least one of the statements above is false. Find an additional hypothesis you could add to make it true.

Definition. Given a group G and an normal subgroup N , the quotient group G/N is the group whose underlying
set is the set of cosets G/N with multiplication such that (g1N)(g2N) = g1g2N .

This definition makes sense by Part (4) of Problem 5.1. I won’t make you check that this is a group, but do so on
your own time if you have any doubt. Also, I won’t make you check this, but the groups G/N and N\G, defined in
the obvious ways, are isomorphic.

Let φ : G→ H be a group homomorphism. Recall that the image and kernel of φ are Ker(φ) := {g ∈ G : φ(g) =
1} and Im(φ) := {φ(g) : g ∈ G}.

Problem 5.4. Show that the kernel of φ is a normal subgroup of G.

Problem 5.5. Show that the “obvious” map from G/Ker(φ) to Im(φ) is an isomorphism.

We often discuss quotients using the language of short exact sequences:

Definition. A short exact sequence 1 → A
α−→ B

β−→ C → 1 is three groups A, B and C, and two group
homomorphisms α : A→ B and β : B → C such that α is injective, β is surjective, and Im(α) = Ker(β).

I will occasionally write 0 instead of 1 at one end or the other of a short exact sequence. I do this when the adjacent
group (meaning A or C) is abelian and it would feel bizarre to denote the identity of that abelian group as 1.

We’ll write Cn for the abelian group Z/nZ. This is called the cyclic group of order n.

Problem 5.6. Show that there is a short exact sequence 1→ Cm → Cmn → Cn → 1.

Problem 5.7. Show that there is a short exact sequence 1→ C3 → S3 → S2 → 1.

Problem 5.8. Show that there is a short exact sequence 1→ C2
2 → S4 → S3 → 1.

Problem 5.9. What is the relationship between Problems 5.7 and 5.8 and your computations on the first day of class
involving {(β1 + ωβ2 + ω2β3)3, (β1 + ω2β2 + ωβ3)3} and {(γ1 + γ2 − γ3 − γ4)2, (γ1 − γ2 + γ3 − γ4)2, (γ1 −
γ2 − γ3 + γ4)2}?



6. SIMPLE GROUPS

Definition. A group G is called simple if G has precisely two normal subgroups, G and {1}.

We remark that the trivial group is not simple, since it only has one normal subgroup.

Problem 6.1. Let G be simple and let H be any group. Show that, for every group homomorphism φ : G → H ,
either φ is injective or else φ is trivial.

Problem 6.2. Let p be a prime. Show that Cp is simple.

Problem 6.3. In this problem, we use a slick trick to check that A5 is simple. The conjugacy classes of A5 are as
follows. (You may trust this; it will probably show up on homework eventually.)

representative element e (123) (12)(34) (12345) (12354)
size of conjugacy class 1 20 15 12 12

(1) Show that any normal subgroup of A5 must have size contained in the list
1, 1 + 12, 1 + 15, 1 + 20,

1 + 12 + 12, 1 + 12 + 15, 1 + 12 + 20, 1 + 15 + 20,
1 + 12 + 12 + 15, 1 + 12 + 12 + 20, 1 + 12 + 15 + 20,

1 + 12 + 12 + 15 + 20

 = {1, 13, 16, 21, 25, 28, 33, 36, 40, 45, 48, 60}.

(2) Explain why the only possibilities in this list which can occur are 1 and 60.

Problem 6.4. Let G1 and G2 be simple groups and let N be a normal subgroup of G1 ×G2. Prove that one of the
following cases must hold:

I: N = {1}
II: N = G1 × {1}

III: N = {1} ×G2

IV: N = G1 ×G2 or
V: G1

∼= G2 and N = {(g, φ(g)) : g ∈ G1} where φ : G1 → G2 is an isomorphism.

Hint: Think of ways to use N to make subgroups of G1 and G2.

Problem 6.5. Let G be a group and let N1 and N2 be distinct normal subgroups of G such that G/N1 and G/N2

are simple. Show that G/(N1 ∩N2) ∼= G/N1 ×G/N2. Hint: What can the image of G in G/N1 ×G/N2 be?

After the prime cyclic groups Cp, the two most important families of simple groups are the alternating groups An
(for n ≥ 5), and the projective special linear groups PSLn(F ) (other than PSL2(F2) and PSL2(F3)). Here, for any
field F , the group PSLn(F ) is defined to be SLn(F )/ SLn(F )∩Z where SLn(F ) is n×nmatrices with determinant
1 and Z is matrices of the form z Idn for z ∈ F×.

All proofs that these groups are simple are a bit lengthy; I have not decided to what extent we will prove this claim.



7. SUBNORMAL SERIES, COMPOSITION SERIES AND THE JORDAN-HOLDER THEOREM

Today, we are going to want the result of Problem 6.5, so we repeat it:

Problem 6.5 again: Let G be a group and let N1 and N2 be distinct normal subgroups of G such that G/N1 and
G/N2 are simple. Show that G/(N1∩N2) ∼= G/N1×G/N2. Hint: What can the image of G in G/N1×G/N2 be?

Definition. A subnormal series of a groupG is a chain of subgroupsG = G0.G1.G2.G3. · · ·.GN = {e}where
Gj+1 is normal in Gj . A composition series is a subnormal series where each subquotient Gj/Gj+1 is simple.

Problem 7.1. Show that every finite group has a composition series.

Problem 7.2. Show that S4 has a composition series with subquotients C2, C3, C2 and C2.

Problem 7.3. Show that GL2(F7) has a composition series with subquotients C2, C3, PSL2(F7) and C2. You may
assume that PSL2(F7) is simple.

Problem 7.4. Let G be a group with a composition series and let N be a normal subgroup of G. Show that N and
G/N have composition series.

The aim of this worksheet is to prove:

Theorem (Jordan-Holder). Let G be a group with two composition series G0 .G1 . · · · .GM = {e} and H0 .H1 .
· · · . HN = {e}. Then M = N and the list of subquotents (G0/G1, G1/G2, . . . , GM−1/GM ) is a permutation of
(H0/H1, H1/H2, . . . ,HN−1/HN ).

Our proof will be by induction on min(M,N).

Problem 7.5. Prove the base case, where min(M,N) = 0.

Problem 7.6. Explain why we are done if G1 = H1.

Problem 7.7. Suppose that G1 6= H1. Explain how to finish the proof in this case.

The Jordan-Holder theorem gives the basic strategy for studying groups: Understand the simple groups, and under-
stand how they can be assembled into short exact sequences.



8. SEMIDIRECT PRODUCTS

Let A be a group and let C be a group with a left action on A by a map φ : C → Aut(A). In other words, we require
that φ(c)(a1 ∗ a2) = φ(c)(a1) ∗ φ(c)(a2) as well as the usual left action axiom that φ(c1c2)(a) = φ(c1)

(
φ(c2)(a)

)
.

Definition. With the above notation, the semidirect product A oφ C is defined as the set of ordered pairs (a, c) ∈
A× C with multiplication (a1, c1) ∗ (a2, c2) = (a1 ∗ φ(c1)(a2), c1 ∗ c2).

The subscript φ is often omitted when it is clear from context.

Note that we use a left action of C on A to define AoC. Likewise, given a right action of C on A, we define CnA.
This may seem odd, but I promise it is less confusing this way.

Problem 8.1. Verify that Aoφ C is a group.

Problem 8.2. In the above setting, show that:

(1) {(a, 1)} is a normal subgroup of Aoφ C, isomorphic to A.
(2) {(1, c)} is a subgroup of Aoφ C, isomorphic to C.
(3) {(a, 1)} ∩ {(1, c)} = {(1, 1)}.
(4) Every element of Aoφ C can be written uniquely in the form (a, 1)(1, c) for a ∈ A, c ∈ C.

Problem 8.3. Let G be a group with subgroups A and C such that, for c ∈ C, we have cAc−1 = A. When this
condition holds, we say that C normalizes A.

(1) Show that {ac : a ∈ A, c ∈ C} is a subgroup of G. We call this subgroup AC.
(2) Suppose, in addition that A ∩ C = {1}. Show that1 AC ∼= Ao C.
(3) Suppose that A ∩ C = {1} and both that A normalizes C and C normalizes A. Show that AC ∼= A× C.

The rest of the worksheet is examples.

Problem 8.4. Give two actions of C2 on C3 such that S3
∼= C3 oC2 for one action and C6

∼= C3 oC2 for the other.

Problem 8.5. Let p be prime. Show that Cp2 6∼= Cp o Cp for any action of Cp on Cp.

Let k be a field and let V be a k vector space; we’ll write V+ for V considered as an additive group. Let GL(V ) be
a group of invertible k-linear maps V → V . Let Aff(V ) be the group of maps V → V of the form ~v 7→ a~v +~b for
a ∈ GL(V ) and~b ∈ V .

Problem 8.6. Show that Aff(V ) ∼= V+ o GL(V ).

Problem 8.7. Let dimk V = n. Show that Aff(V ) is isomorphic to the group of (n+ 1)× (n+ 1) matrices of the
form 

∗ ∗ · · · ∗ ∗
∗ ∗ · · · ∗ ∗
...

...
. . .

...
...

∗ ∗ · · · ∗ ∗
0 0 · · · 0 1

 .

1It is possible that G = AC and A ∩ C = {1}, yet neither of A nor C normalizes each other. An example is G = S4 with A the three
element subgroup generated by (123) and C the eight element subgroup generated by (1234) and (12)(34). In this case, we do not get to
write G as a semidirect product.



9. ABELIANIZATION AND THE COMMUTATOR SUBGROUP

Definition. Let G be a group. The commutator subgroup is the group generated by all products ghg−1h−1 for g
and h ∈ G. It is denoted [G,G]. The commutator subgroup is also called the derived subgroup, and is sometimes
also denoted G′ or D(G).

Problem 9.1. Show that [G,G] is normal in G.

Problem 9.2. Show that G/[G,G] is abelian.

Definition. The quotient G/[G,G] is called the abelianization of G and denoted Gab.

Problem 9.3. Prove the universal property of the abelianization: If G is a group, A is an abelian group and
χ : G → A is a group homomorphism, then there is a unique homomorphism φ : Gab → A such that the diagram
below commutes:

G
χ

!!
����

Gab

φ
// A

.

Problem 9.4. Show that the commutator subgroup of Sn is An.

Problem 9.5. Show that the commutator subgroup of An is An for n ≥ 5.

Remark. Way back in Problem 2.5, you showed that there are no nontrivial homomorphisms from A5 to an abelian
group. We can now state that result in a more sophisticated sounding way: The abelianization of A5 is trivial.

Problem 9.6. Suppose that we have a short exact sequence 1→ H → G→ A→ 1 where A is abelian. Show that
[G,G] ⊆ H .

Problem 9.7. Many people believe that the every element in the commutator subgroup is of the form ghg−1h−1.
This is need not be true. Let V be a vector space of dimension ≥ 4 over a field of characteristic 6= 2 and let G be the
group whose underlying set is V ×

∧2(V ), with multiplication:

(v, α) ∗ (w, β) = (v + w,α+ β + v ∧ w).

You checked on the problem sets that G is a group.

(1) Show that (0, α) is a commutator if and only if α is of the form v ∧ w.
(2) Show that the commutator subgroup is all pairs (0, α) for α ∈

∧2 V .



10. SOLVABLE GROUPS

We recall that the commutator subgroup [G,G] of a group G is the subgroup generated by all products ghg−1h−1.

Definition. The derived series of G is the sequence of subgroups D0(G) ⊇ D1(G) ⊇ D2(G) ⊇ · · · defined
inductively by D0(G) = G and Dk(G) = [Dk−1(G), Dk−1(G)]. We call Dk(G) the k-th derived subgroup.

Remark. The k-derived subgroup is often also denoted G(k). The parentheses in G(k) is meant to distinguish G(k)

from the k-fold product of G with itself. Professor Speyer recommends, instead, using words to do this: Say “let
G(k) be the k-th derived subgroup . . . ” or “let Gk be the k-fold product of G with itself . . . .”

Problem 10.1. Check that the derived series of S4 is S4 ⊃ A4 ⊃ V ⊃ {e} where V is the four element group
generated by (12)(34) and (13)(24).

Definition. A group G is called solvable if there is some index N such that the N -th derived subgroup is trivial.

Problem 10.2. Show that a group G is solvable if and only if it has a subnormal series in which each subquotient is
abelian.

Problem 10.3. Show that subgroups of solvable groups are solvable.

Problem 10.4. Show that quotients of solvable groups are solvable.

Problem 10.5. Let 1 → A → B → C → 1 be a short exact sequence with A and C solvable. Show that B is
solvable.

Problem 10.6. Let G be the group of bijections Z/nZ→ Z/nZ of the form x 7→ ax+ b. Show that G is solvable.

Problem 10.7. Let k be a field and let B be the group of invertible upper triangular n × n matrices with entries in
k. Show that B is solvable.



11. CENTER, CENTRAL SERIES AND NILPOTENT GROUPS

Definition. The center of a group G is the set Z(G) := {h : gh = hg ∀g ∈ G}.

Problem 11.1. Let G be a group.

(1) Check that Z(G) is a subgroup of G.
(2) Check that Z(G) is canonical in G (and hence normal).
(3) Check that every subgroup of Z(G) is normal in G.

Problem 11.2. Let k be a field and let U be the group of matrices with entries in k of the form
[

1 ∗ ∗
0 1 ∗
0 0 1

]
. Show that

the center of U is the group of matrices of the form
[

1 0 ∗
0 1 0
0 0 1

]
.

Problem 11.3. Check that the center of Sn is trivial for n ≥ 3.

Problem 11.4. Let F be a field with more than two elements. Let B be the group of matrices of the form [ ∗ ∗0 ∗ ].
Show that the center of F is {[ z 0

0 z ] : z ∈ F×}.

This problem was on the problem sets in a slightly different form; check that everyone in your group remembers
how to do it.

Problem 11.5. Let p be a prime and let G be a group of order pk for some k ≥ 1. Show that Z(G) is nontrivial.

Definition. Let G be a group. A central series of G is a sequence of subgroups G0 / G1 / G2 / · · · / GN such
that, if g ∈ G and h ∈ Gi then ghg−1h−1 ∈ Gi−1, for 1 ≤ i ≤ N . G is called nilpotent if it has a central series
G0 / G1 / G2 / · · · / GN with G0 = {e} and GN = G.

Remark. In many sources, a central series is required to have G0 = {e} and GN = G, but then the “upper central
series” and the “lower central series”, which you will meet on the problem sets, are not central series. I prefer to
take the more general definition.

Problem 11.6. Let G0 / G1 / G2 / · · · / GN be a series of subgroups of G. Show that G is a central series if and
only if all the Gi are normal in G, and Gi/Gi−1 ⊆ Z(G/Gi−1) for 1 ≤ i ≤ N .

Problem 11.7. Let k be a field and let U be the group of matrices with entries in k of the form
1 ∗ ∗ · · · ∗

1 ∗ · · · ∗
1 · · · ∗

. . .
1

 .
Show that U is nilpotent.

Problem 11.8. Let p be a prime and let G be a group of order pk for some k ≥ 1. Show that G is nilpotent.

Problem 11.9. Show that a nilpotent group is solvable.

Problem 11.10. Show that a subgroup of a nilpotent group is nilpotent.

Problem 11.11. Show that a quotient of a nilpotent group is nilpotent.

Problem 11.12. Show that the following groups are solvable but not nilpotent.

(1) The symmetric groups S3 and S4.
(2) The group of invertible matrices of the form [ ∗ ∗0 ∗ ] with entries in a field with more than two elements.

Problem 11.13. Give an example of a short exact sequence 1 → A → B → C → 1 with A and C nilpotent but B
not nilpotent.



12. THE SYLOW THEOREMS

Let p be a prime.

Definition. A p-group is a group P with #(P ) = pk for some k. For a group G, a p-subgroup of G is a subgroup
which is a p-group.

Problem 12.1. Let P be a p group and let X be a finite set on which P acts. Suppose that #(X) 6≡ 0 mod p. Show
that P fixes some point of X .

Let G be a group. Factor #(G) as pkm where p does not divide m.

Definition. A Sylow p-subgroup of G is a subgroup of G of order pk.

Large parts of the following problems appeared on the homework; please remind each other of the solutions.

Problem 12.2. Let GLn(Fp) be the group of n× n matrices with entries in the field with p elements.

(1) Show that # GLn(Fp) =
∏n−1
j=0 (pn − pj).

(2) Show that GLn(Fp) has a Sylow p-subgroup.

Problem 12.3. Let v(n) be the exponent such that n! = pv(n)m with p not dividing m.

(1) Write n = pm+ r with 0 ≤ r ≤ p− 1. Show that v(n) = m+ v(m).
(2) Show that Sn has a Sylow p-subgroup.

Problem 12.4. Let Γ be a finite group with a Sylow p-subgroup Π. Let G be a subgroup of Γ.

(1) Show that G has a Sylow p-subgroup P . Hint: Consider G acting on Γ/Π.
(2) Show, more specifically, that there is some γ ∈ Γ such that P = G ∩ γΠγ−1.

Hint for the following three problems: Use Problem 12.4.

Problem 12.5. (The first Sylow theorem) Show that every finite group G has a Sylow p-subgroup.

Problem 12.6. Let G be a finite group and let P be a Sylow p-subgroup with #(P ) = pk.

(1) Let Q be a p-subgroup of G. Show that there is some g ∈ G such that Q ⊆ gPg−1.
(2) Let H be a subgroup of G whose order is divisible by pk. Show that there is some g ∈ G such that

H ⊇ gPg−1.

Problem 12.7. (The second Sylow theorem) Let G be a finite group and let P1 and P2 be two Sylow p-subgroup
of G. Show that there is some g ∈ G such that P2 = gP1g

−1.

Let G be a group and let H be a subgroup of G. We define NG(H) = {g ∈ G : gHg−1 = H}. The group NG(H)
is called the normalizer of H in G.

Problem 12.8. Map G/NG(P ) to the set of Sylow p-subgroups by sending the coset gNG(P ) to gPg−1. Show that
this map is well defined, and is a bijection.

Problem 12.9. (1) Show that P is normal in NG(P ).
(2) Let Q be a p-subgroup of NG(P ). Show that Q ⊆ P .
(3) Let H be a p-subgroup of G. Show that H ∩NG(P ) = H ∩ P .

Problem 12.10. Since P is a subgroup of G, the group P acts on G/NG(P ). Show that the only coset which is
fixed for this action is eNG(P ).

Problem 12.11. (The third Sylow theorem) The number of Sylow p-subgroups of G is ≡ 1 mod p.



13. SOME PROBLEMS WITH SYLOW GROUPS

Problem 13.1. Let G be a group of order pkm where p does not divide m. Show that the number of p-Sylow
subgroups of G divides m.

Problem 13.2. Let G and H be finite groups and p a prime number. Let P and Q be p-Sylow subgroups of G and
H .

(1) Show that P ×Q is a p-Sylow subgroup of G×H .
(2) Show that every p-Sylow subgroup of G×H is of the form P ′ ×Q′ for P ′ and Q′ p-Sylow subgroups of G

and H .

Problem 13.3. Let 1 → A
α−→ B

β−→ C → 1 be a short exact sequence of finite groups and let Q be a p-Sylow
subgroup of B. Show that α−1(Q) and β(Q) are p-Sylow subgroups of A and C respectively.

Problem 13.4. Let p < q be primes and let G be a group of order pq.

(1) Show that the q-Sylow subgroup of G is normal.
(2) Conclude that there is a short exact sequence 1→ Cq → G→ Cp → 1.
(3) Show that G ∼= Cq o Cp for some action of Cp on Cq.

Problem 13.5. Show that there are no simple groups of order 40. (Hint: Look at 5-Sylows.)

Problem 13.6. In this problem, we will show that there is no simple group G of order 80.

(1) Show that, if G were such a group, then G would have five 2-Sylow subgroups.
(2) Consider the map G→ S5 to get a contradiction.

Problem 13.7. Recall that, for a subgroup H of a group G, the normalizer NG(H) is defined to be {g ∈ G :
gHg−1 = H}. Let G be a finite group and P a p-Sylow subgroup of G.

(1) Show that P is canonical in NG(P ).
(2) Show that NG(NG(P )) = NG(P ).

Problem 13.8. Let G be a finite nilpotent group. On the homework you showed/will show that, if H ( G is a
proper subgroup, then NG(H) ) H .

(1) Show that every Sylow p-subgroup of a finite nilpotent group G is normal.
(2) Let P and Q be Sylow subgroups of G for different primes, p and q. Show that, if g ∈ P and h ∈ Q, then

gh = hg.
(3) LetGp be the Sylow p-subgroup ofG. Show thatG ∼=

∏
Gp, where the right hand side is the direct product.

In other words, every finite nilpotent group is the direct product of its Sylow subgroups.

Problem 13.9. Let 1→ A→ B
β−→ C → 1 and let P be a Sylow p-subgroup ofA. We’ll identifyA with its image

in B.

(1) (Frattini’s argument) Show that B = ANB(P ). Hint: Let b ∈ B. What can you say about nPb−1?

(2) Show that NB(P )
β−→ C is surjective.

(3) Show that 1→ NA(P )→ NB(P )→ C → 1 is exact.



14. SCHUR-ZASSENHAUS, THE ABELIAN CASE

The aim of the next two worksheets will be to prove:

Theorem (Schur-Zassenhaus). Let 1 → A → B → C → 1 be a short exact sequence of finite groups where
GCD(#(A),#(C)) = 1. Then this sequence is right split, so B ∼= Ao C.

This is the start of an answer to the question “how are groups assembled out of smaller groups”: When you put
groups of relatively prime order together, you just get semidirect products.

Today, we’ll be proving the case where A is abelian.1 Here is our main result:

Today’s goal: Let A be an abelian group, C a finite group of size n, and suppose that a 7→ an is a bijection from A
to A. Let 1→ A→ B → C → 1 be a short exact sequence. Then this sequence is right split.

Problem 14.1. Show that, ifA is a finite abelian group and n an integer such that GCD(#(A), n) = 1, then a 7→ an

is a bijection. Thus, the above Theorem does imply the Schur-Zassenhaus theorem for A abelian.

From now on, let A be an abelian group, let C be a finite group and let 1 → A → B
β−→ C → 1 be a short

exact sequence. We abbreviate #(C) to n; we will not introduce the hypothesis on a 7→ an until later. We’ll
identify A with its image in B.
Let S be the set of right inverses of β, meaning maps σ : C → B such that β(σ(c)) = c. We emphasize that σ is not
required to be compatible with the group multiplication in any way. Let B act on S by (bσ)(c) = bσ(β(b)−1c).

Problem 14.2. Check that this is an action.

Let σ1 and σ2 ∈ S. Set
d(σ1, σ2) =

∏
c∈C

(
σ1(c)σ2(c)−1

)
. (∗)

We don’t have to specify the order of the product, because every term is in A.

Problem 14.3. Show that d(σ1, σ2)d(σ2, σ3) = d(σ1, σ3) and d(σ1, σ2) = d(σ2, σ1)−1.

Problem 14.4. For the action of B on S described above, check that d(bσ1, bσ2) = bd(σ1, σ2)b−1.

Define σ1 ≡ σ2 if d(σ1, σ2) = 1.

Problem 14.5. Check that ≡ is an equivalence relation.

Define X to be the set of equivalence classes of S module the relation ≡.

Problem 14.6. Check that the action of B on S descends to an action of B on X.

Now, we impose the condition that a 7→ an is an automorphism of A.

Problem 14.7. Show that the subgroup A of B acts on X with a single orbit and trivial stabilizers.

The following problem was on the problem sets; check that everyone knows how to do it:

Problem 14.8. You have now shown that B acts on X, and that the restriction of this action to A has a single orbit
and trivial stabilizers. Explain why this means that 1→ A→ B → C → 1 is right split.

Remark. For this remark, I’ll switch to writing A additively. There are useful situations where A is infinite but we
can still show a 7→ na is bijective. For example, we can consider 0 → V → B → C → 1 where C is finite and V
is a vector space over a field of characteristic zero. A more sophisticated examples is short exact sequences of Lie
groups 0→ Rk → G→ K → 1 where K is compact; here we replace the product in (∗) with

∫
k∈K σ1(k)σ−1

2 (k).

1This approach is closely based on that of Kurzweil and Stellmacher, The Theory of Finite Groups, Chapter 3.3, Springer-Verlag (2004).



15. THE SCHUR-ZASSENHAUS THEOREM, GENERAL CASE

Today’s goal is to prove:

Theorem (Schur-Zassenhaus). Let A and C be finite groups with GCD(#(A),#(C)) = 1. Then any short exact
sequence 1→ A→ B → C → 1 is right split.

We introduce the following (not standard) terminology: We’ll say that a pair of groups (A,C) is straightforward if
every short exact sequence 1→ A→ B → C → 1 is right split. On the previous worksheet, we showed that (A,C)
is straightforward if A is abelian and GCD(#(A),#(C)) = 1.

Problem 15.1. Suppose that (A1, C) and (A2, C) are straightforward and there is a short exact sequence 1→ A1 →
A → A2 → 1 with A1 canonical in A. Show that (A,C) is straightforward. Hint/Warning: Unfortunately, I think
this first problem is one of the hardest. First use that (A2, C) is straightforward, then use that splitting to build a new
sequence which we can split using that (A1, C) is straightforward.

Problem 15.2. Let C be a finite group, let p be a prime not dividing #(C) and let P be a p-group. Show that (P,C)
is straightforward.

Let p be a prime dividing #(A) and let P be a p-Sylow subgroup of A. Let 1→ A→ B → C → 1 be a short exact
sequence, with GCD(#(A),#(C)) = 1. Assume inductively that we have shown (A′, C) is straightforward
whenever GCD(#(A′),#(C)) = 1 for #(A′) < #(A).
Recall that NA(P ) = {a ∈ A : aPa−1 = P} and likewise for NB(P ).

Problem 15.3. Show that P is canonical in NA(P ).

Problem 15.4. Suppose that A = NA(P ). Prove that 1→ A→ B → C → 1 is right split.

So we may now assume that NA(P ) 6= A.

Problem 15.5. (Frattini’s argument) Show that B = ANB(P ). Hint: Let b ∈ B. What can you say about bPb−1?

Problem 15.6. With A, B, C, P as above, show that 1→ NA(P )→ NB(P )→ C → 1 is exact.

Problem 15.7. Show that 1→ A→ B → C → 1 is right split.

Remark. Problem 15.1 has uses outside of finite groups. For example, let K be a compact Lie group and let U be
a simply connected nilpotent Lie group. An analogous argument shows that (U,K) is straightforward.



16. SIMPLICITY OF PSLn(F )

The three most important families of simple groups are

• The cyclic groups Cp for p prime.
• The alternating groups An for n ≥ 5.
• The projective special linear groups PSLn(F ), except for PSL2(F2) and PSL2(F3).

In this worksheet, we’ll show PSLn(F ) is simple for #(F ) > 5. The fields of orders 2, 3, 4 and 5 are not deeper,
but the details are messier.

Let F be a field. The groups GLn(F ) and SLn(F ) are the groups of n × n matrices with entries in F which,
respectively, have nonzero determinant and have determinant 1. Let Z be the group of matrices of the form z Idn,
for z ∈ F×. The projective general linear group and projective special linear group are, respectively, PGLn(F ) :=
GLn(F )/Z and PSLn(F ) := SLn(F )/(Z ∩ SLn(F )).

For 1 ≤ i 6= j ≤ n and r ∈ F , the matrix Eij(r) is the n × n matrix with ones on the diagonal, an r in position
(i, j) and zeroes everywhere else. A matrix of the form Eij(r) is called an elementary matrix. We proved in 593
(and you may use) that the elementary matrices generate SLn(F ) for any F .

Problem 16.1. LetN be a normal subgroup of SLn(F ). Suppose that there a pair of indices (a, b) so thatN contains
all the matrices Eab(r). Show that N = SLn(F ).

A companion matrix is a matrix of the form  0 0 0 ··· ∗
1 0 0 ··· ∗
0 1 0 ··· ∗

0 0
. . . ··· ∗

0 0 ··· 1 ∗

 .
By the Rational Canonical Form Theorem, for α ∈ GLn(F ), there is g ∈ GLn(F ) such that gαg−1 is block diagonal
with blocks that are companion matrices and, furthermore, we can take the largest block to have size equal to the
degree of the minimal polynomial of α. We will want a variant of this for SLn(F ).

Problem 16.2. Define a generalized companion matrix to be an m×m matrix of the form 0 0 0 ··· ∗
∗ 0 0 ··· ∗
0 ∗ 0 ··· ∗

0 0
. . . ··· ∗

0 0 ··· ∗ ∗

 .
(1) Let α ∈ SLn(F ). Show that there is h ∈ SLn(F ) such that hαh−1 is block diagonal with blocks that are

generalized companion matrices.
(2) If α 6∈ Z, show furthermore that we can assume the largest block has size ≥ 2.

Problem 16.3. Let β be an m ×m generalized companion matrix for m ≥ 2. Assume that #(F ) > 5. Show that
we can find a diagonal matrix d ∈ SLn(F ) such that d−1β−1dβ is of the form

γ1 0 0 ··· ∗
0 γ2 0 ··· ∗
0 0 γ3 ··· ∗

0 0 0
. . . ∗

0 0 0 ··· γm

 (∗)

with γ1 6= γm. Hint: I found it helpful to write 0 0 0 ··· ∗
∗ 0 0 ··· ∗
0 ∗ 0 ··· ∗

0 0
. . . ··· ∗

0 0 ··· ∗ ∗

 =

 0 0 0 ··· 1
1 0 0 ··· 0
0 1 0 ··· 0

0 0
. . . ··· 0

0 0 ··· 1 0

  ∗ 0 0 ··· ∗
0 ∗ 0 ··· ∗

0 0
. . . ··· ∗

0 0 ··· ∗ ∗
0 0 0 ··· ∗

 .
Problem 16.4. Let m ≥ 2 and let N be a normal subgroup of SLm(F ) containing a matrix γ of the form (∗) with
γ1 6= γm. Show that N contains all matrices of the form E1m(r). Hint: Compute γ−1E1m(s)−1γE1m(s).

Problem 16.5. Let #(F )>5 and let N be a normal subgroup of SLn(F ) not contained in Z. Show N = SLn(F ).

Problem 16.6. Let #(F ) > 5. Show that PSLn(F ) is simple.



Remark. The assumption that #(F ) > 5 was used in Problem 16.3. A case by case analysis can derive the same
conclusion for #(F ) = 4, 5 and for #(F ) = 3 with n ≥ 3. If #(F ) = 2, it is impossible to have γ1 6= γm, but a
case by case analysis can show that, for n ≥ 3 a normal subgroup of SLn(F2) containing a generalized companion
matrix with a block of size ≥ 2 contains an elementary matrix, and then the proof finishes as before.

Remark. The slickest proof that PSLn(F ) is simple uses Iwasawa’s Criterion, but that is not closely related to
other material we have covered. See Keith Conrad’s lecture notes at https://kconrad.math.uconn.edu/
blurbs/grouptheory/PSLnsimple.pdf for a good exposition of that approach.

Remark. PSLn(F ) is an example of a “group of Lie type”, which roughly means to take a complex simple Lie group
like PSLn(C) and make “the same definition over a general field”. The complex simple Lie groups are classified.
A given complex simple Lie group can correspond to more than one group of Lie type, but the groups of Lie type
are also classified. The Classification of Finite Simple Groups says that every finite simple group is either cyclic,
alternating, of Lie type, or in a list of 26 sporadic examples. The status of the CFSG is a little unclear; a proof was
announced in 1983, with the argument spread over hundreds of papers occupying tens of thousands of pages. Two
gaps in the argument were found, and fixed in 2004 and 2008 respectively, and no new ones have been found since
then. Group theorists are currently at work to produce a shorter, cohesive proof.

https://kconrad.math.uconn.edu/blurbs/grouptheory/PSLnsimple.pdf
https://kconrad.math.uconn.edu/blurbs/grouptheory/PSLnsimple.pdf


17. REVIEW OF POLYNOMIAL RINGS

Throughout this worksheet, let k be a field. We write k[x] for the ring of polynomials with coefficients in k[x].

Problem 17.1. Let b(x) ∈ k[x] be a nonzero polynomial of degree d. Let a(x) be any polynomial in k[x]. Show
that there are unique polynomials q(x) and r(x), with deg r < d, such that

a(x) = b(x)q(x) + r(x).

In other words, k[x] is a Euclidean ring with respect to the norm of degree. As you hopefully remember, this means
that k[x] is a PID and a UFD, and we can compute GCD’s using the Euclidean algorithm.

Problem 17.2. Let b(x) ∈ k[x] be a nonzero polynomial of degree d. Show that the ring k[x]/b(x)k[x] is a k-vector
space of dimension d.

Problem 17.3. Use the Euclidean algorithm to compute the GCD of t3 + t and t4 − 1 in Q[t]

Problem 17.4. Use the Euclidean algorithm to find polynomials f(t) and g(t) ∈ Q[t] such that

f(t)(t2 + t+ 2) + g(t)(t3 − 2) = 1.

Problem 17.5. Let b(x) be an irreducible polynomial in k[x]. Show that k[x]/b(x)k[x] is a field.

Problem 17.6. The polynomial t3 − 2 is irreducible in Q[t], so the previous problem says that Q[t]/(t3 − 2)Q[t] is
a field. Compute (t2 + t+ 2)−1 in this field.

Let K be a larger field containing k. For θ ∈ K, we say that θ is algebraic over k if there is a nonzero polynomial
f(t) in k[t] with f(θ) = 0.

Problem 17.7. Let θ ∈ K be algebraic over k. Let I ⊂ k[t] be {f(θ) ∈ k[t] : f(θ) = 0}.

(1) Show that I is an ideal.
(2) Show that I = m(t)k[t] for some irreducible polynomial m.
(3) Show that k[θ], meaning the subring of K generated by k and θ, is isomorphic to k[t]/m(t)k[t].

The polynomial m(t) is called the minimal polynomial of θ.

Problem 17.8. Show that θ is algebraic over k if and only if dimk k[θ] <∞.

Problem 17.9. Show that the set of elements of K which are algebraic over k is a subfield of K.



18. DEGREES OF FIELD EXTENSIONS, AND CONSTRUCTIBLE NUMBERS

Definition: Let L be a field and K a subfield. The degree of L over K, written [L : K], is the dimension of L as a
K-vector space.

Problem 18.1. Let K ⊆ L ⊆M be three fields with [L : K] and [M : L] <∞. Show that [M : K] = [M : L][L :
K].

Problem 18.2. Let k ⊆ K be a field extension with [K : k] < ∞. Let θ ∈ K and let m(x) be the minimal
polynomial of θ over k. Show that degm(x) divides [K : k].

We illustrate these results with an extremely classical application. A real number θ ∈ R is called constructible if it
can be written in terms of rational numbers using the operations +,−,×,÷ and√ . Classically, these numbers were
studied because the distance between any two points constructed with straightedge and compass is constructible; now
we can motivate them by saying they are the numbers which can be computed exactly with a four function calculator.

Figure: Two ancient mathematical tools

Problem 18.3. Suppose we compute a sequence of real numbers θ1, θ2, θ3, . . . , θN where each θk is either

• a rational number,
• of one of the forms θi + θj , θi − θj , θiθj or θi/θj for some i, j < k or
• of the form

√
θj for some j < k.

Show that [Q[θ1, θ2, . . . , θN ] : Q] is a power of 2.

Problem 18.4. Let θ be a constructible real number and let m(x) be its minimal polynomial over Q. Show that
degm(x) is a power of 2.

Problem 18.5. (The impossibility of doubling the cube.) Show that 3
√

2 is not constructible.

Problem 18.6. (The impossibility of trisecting the angle) It is well known that a 60◦ angle is constructible with
straightedge and compass. Show, however, that cos 20◦ is not constructible. Hint:

4 cos3 20◦ − 3 cos 20◦ = cos 60◦ =
1

2
.



19. SPLITTING FIELDS

Definition: Let k be a field, let f(x) be a polynomial in k[x] and let K be an extension field of f . We will say that f
splits in K if f factors as a product of linear polynomials in K[x]. We say that K is a splitting field of f if f splits
as a product c

∏
(x− θj) in K[x] and the field K is generated by k and by the θj .

For example, if k = Q and θ1, θ2, . . . , θn are the roots of f(x) in C, then Q[θ1, . . . , θn] is a splitting field of f(x).

Problem 19.1. Let k be a field and let f(x) be a polynomial in k[x]. Show that f has a splitting field. (Please do
not use that every field has an algebraic closure. That is a much1 harder result than this one.)

Problem 19.2. Let

f(x) =
(
x− cos 2π

7

) (
x− cos 4π

7

) (
x− cos 8π

7

)
= 1

8

(
8x3 + 4x2 − 4x− 1

)
.

I promise, and you may trust me, that f(x) is irreducible.2 Let K = Q(cos 2π
7 ).

(1) Show that [K : Q] = 3.
(2) Show that f(x) splits in K. Hint: Use the double angle formula.
(3) Show that there is an automorphism σ : K → K with σ(cos 2π

7 ) = cos 4π
7 .

Problem 19.3. Let L be a splitting field for x3 − 2 over Q. Show that [L : Q] = 6. (Hint: At one point, it will be
very useful to use the fact that Q[ 3

√
2] is a subfield of R.)

This is a good time to discuss separable polynomials.

Definition: Let k be a field and let f(x) be a polynomial in k[x]. We say f is separable if GCD(f(x), f ′(x)) = 1.

Problem 19.4. Let k be a field, let f(x) be a polynomial in k[x] and letK be a field where f splits as c
∏n
j=1(x−θj).

Show that f is separable if and only if θ1, θ2, . . . , θn are distinct.

Problem 19.5. Let k be a field of characteristic zero.

(1) Show that a polynomial in k[x] is separable if and only if it is square free.
(2) Show that irreducible polynomials in k[x] are separable.

1In particular, the fact that every field embeds in an algebraically closed field uses the Axiom of Choice, and this problem does not.
2The most straightforward way to check this is to use the rational root theorem. The slickest is to note that f(x+1) = 1

8
(8x3 +28x2 +

28x+ 7) and apply Eisenstein’s irreducibility theorem.



20. MAPS BETWEEN SPLITTING FIELDS

Problem 20.1. Let k be a field, let f(x) be an irreducible polynomial in k[x] and let L be an extension of k in which
f has a root θ. Show that there is an injection φ : k[x]/f(x)k[x]→ L with φ(x) = θ making the diagram

k

��
((

k[x]/f(x)k[x]
φ // L

commute.

We recall the definition
Definition: Let k be a field, let f(x) be a polynomial in k[x] and let K be an extension field of f . We will say that f
splits in K if f factors as a product of linear polynomials in K[x]. We say that K is a splitting field of f if f splits
as a product c

∏
(x− θj) in K[x] and the field K is generated by k and by the θj .

Problem 20.2. Let k be a field and let f(x) be a polynomial in k[x]. Let K be a splitting field of f in which f splits
as
∏

(x − αj). and let L be a field in which f splits as
∏

(x − βj). Show that there is an injection φ : K → L
making the diagram

k

�� &&
K

φ // L

commute. Hint: Think about k ⊆ k[α1] ⊆ k[α1, α2] ⊆ · · · ⊆ k[α1, α2, . . . , αn] = K.

Problem 20.3. Let k be a field and let f(x) be a polynomial in k[x]. Let K1 and K2 be two splitting fields of f .
Show that there is an isomorphism K1

∼= K2 making the diagram

k

�� ''
K1

∼= // K2

commute.

Problem 20.4. Let k be a field, let f(x) =
∑
fjx

j be a polynomial in k[x] and let σ be an automorphism of k. Let
σ(f)(x) :=

∑
σ(fj)x

j . Let K1 be a splitting field of f and let K2 be a splitting field of σ(f). Show that there is an
isomorphism K1

∼= K2 making the diagram

k

��

σ // k

��
K1

∼= // K2

commute.



21. INTRODUCTION TO FIELD AUTOMORPHISMS

Definition: LetK ⊆ L be fields. An automorphism of L is a bijection σ : L→ L with σ(x+y) = σ(x)+σ(y) and
σ(xy) = σ(x)σ(y). An automorphism of L fixing K is an automorphism of L obeying σ(a) = a for all a ∈ K.
We write Aut(L) for the automorphisms of L and Aut(L/K) for the automorphisms of L fixing K.

Problem 21.1. Let K ⊆ L be fields. Let f(x) be a polynomial in K[x]; let {θ1, θ2, . . . , θr} be the roots of f in L.

(1) Show that Aut(L/K) maps {θ1, θ2, . . . , θr} to itself.
(2) Show that stabilizer of θj in Aut(L/K) is Aut(L/K(θj)).

Problem 21.2. . Let K be a field, let f be a separable polynomial in K[x], let L be a splitting field for f and let
{θ1, θ2, . . . , θn} be the roots of f in L. Show that the action of Aut(L/K) on {θ1, θ2, . . . , θn} gives an injection
Aut(L/K) ↪→ Sn.

Problem 21.3. Let K, f , L and {θ1, θ2, . . . , θn} be as in Problem 21.2. Let g(x) be an irreducible factor of f(x)
in K[x] and renumber the θ’s so that {θ1, θ2, . . . , θm} are the roots of g in L. Show that {θ1, θ2, . . . , θm} is the
Aut(L/K)-orbit of θ1 in L. Hint: Apply Problem 20.4 to the diagram

K[θ1]

��

K[x]/g(x)K[x]
∼=oo

∼= // K[θj ]

��
L // L

Problem 21.4. Let L be the splitting field of x3 − 2 over Q. Show that Aut(L/Q) ∼= S3.

Problem 21.5. Let L = Q(cos 2π
7 ). Show that Aut(L/Q) ∼= C3.



22. GALOIS EXTENSIONS

Problem 22.1. Let K ⊆ L be a field extension of finite degree. Let θ ∈ L and let g(x) be the minimal polynomial
of θ over K.

(1) Show that the size of the Aut(L/K) orbit of θ is ≤ [K[θ] : K].
(2) Show that we have equality if and only if g is separable and g splits in L.

Problem 22.2. Let K ⊆ L be a field extension of finite degree. Show that # Aut(L/K) ≤ [L : K].

It is natural to ask when we have equality in Problem 22.2. This is answered by the following:

Theorem/Definition Let L/K be a field extension of finite degree. The following are equivalent:
(1) We have # Aut(L/K) = [L : K].
(2) The fixed field of Aut(L/K) is K.
(3) For every θ ∈ L, the minimal polynomial of θ over K is separable and splits in L.
(4) L is the splitting field of a separable polynomial f(x) ∈ K[x].

A field extension L/K which satisfies these equivalent definitions is called Galois.

The next four problems prove this theorem.

Problem 22.3. Show that (1) implies (2).

Problem 22.4. Let θ ∈ L and let {θ1, θ2, . . . , θr} be the orbit of θ under Aut(L/K). Let f(x) =
∏
j(x− θj).

(1) Assuming condition (2), Show that f(x) ∈ K[x].
(2) Continuing to assume (2), show that f(x) is the minimal polynomial of θ over K.
(3) Deduce that (2) implies (3).

Remark. The fact that, in a Galois extension, the minimal polynomial of θ is
∏
θ′∈Aut(L/K)θ(x− θ′) will be useful

many times again.

Problem 22.5. Show that (3) implies (4).

Problem 22.6. Show that (4) implies (1).

Definition When L/K is Galois, we denote Aut(L/K) by Gal(L/K) and call it the Galois group of L over K.



23. SEPARABILITY, GALOIS CLOSURE, PERFECT FIELDS

Remark: This worksheet covers a number of topics which are often glossed over in first courses on Galois theory.
We could afford to gloss over them too, but this seems like the natural spot for them.

Definition Let K ⊆ L be an extension of fields. An element θ ∈ L is called separable over K if θ is algebraic over
K and the minimal polynomial of θ over K is a separable polynomial. The extension L/K is called separable if it
is generated by separable elements.

Problem 23.1. Show that, if K has characteristic zero then every finite degree extension of K is separable.

So, in characteristic zero, the “separable” condition usually comes for free. At the end of the worksheet, we’ll return
to think harder about separability in characteristic p.

Problem 23.2. Let L/K be a separable field extension; specifically, let θ1, . . . , θN be separable elements generating
L/K and let gj(x) be the (separable) minimal polynomial of θj over K. Let M be the splitting field of

∏
j gj(x)

over K. Show that M/K is Galois.

The field M is what we will eventually call the Galois closure of L/K, but we haven’t proved any uniqueness
properties of it yet. Before we address that, some more basic things.

Problem 23.3. Let K, L and M be as in the previous problem. Show that every element of M is separable over K.

Problem 23.4. Let L/K be a separable field extension. Show that every element of L is separable over K.

We now address the uniqueness of the Galois closure.

Problem 23.5. Let K, L and M be as in the previous problem. Let L ⊆ Q be a field extension such that Q/K is
Galois. Show that there is an injection M ↪→ Q making the diagram

K ⊆ L ⊆ M

= = 99K

K ⊆ L ⊆ Q

commute.

Problem 23.6. Let L/K be a separable field extension. Let θ1, . . . , θN be a list of separable elements generating L
over K, and let θ̂1, . . . , θ̂

N̂
be another such list. Let gj(x) be the minimal polynomial of θj over K and let ĝj(x) be

the minimal polynomial of θ̂j . Let M be the splitting field of
∏
gj(x) and let M̂ be the splitting field of

∏
ĝj(x).

Show that M ∼= M̂ .

So Galois closures are unique up to isomorphism.

Finally, we address separability in characteristic p.

Definition Let k be a field of characteristic p. We define k to be perfect if every element of k has a p-th root. We
also define all fields of characteristic zero to be perfect.

The next problem was on the problem sets, check that your whole group knows how to do it:

Problem 23.7. Show that finite fields are perfect.

Problem 23.8. Let k be a perfect field of characteristic p and let f(x) ∈ k[x]. Show that, if the derivative f ′(x) is
0, then f(x) = g(x)p for g(x) ∈ k[x].

Problem 23.9. Let k be a perfect field and let f(x) ∈ k[x] be an irreducible polynomial. Show that f(x) is separable.

Problem 23.10. Show that, if K is perfect then every finite degree extension of K is separable.

The simplest example of a nonperfect field is Fp(t).



24. ARTIN’S LEMMA

The following problem was on the problem sets, check that everyone knows how to solve it:

Problem 24.1. Let L be a field, let H be a group of automorphisms of L and let F = Fix(H), the elements of L
fixed by H . Suppose that V is an L-vector subspace of Ln and that H takes V to itself. Show that V has a basis
whose elements lie in Fn.

One of several results called Artin’s Lemma: Let L be a field, let H be a finite group of automorphisms of L and
let F = Fix(H), the elements of L fixed by H . Then [L : F ] = #(H) and H = Aut(L/F ).

Throughout this worksheet, let L, H and F be as above.

Problem 24.2. Show that #(H) ≤ [L : F ]. This is just quoting something you’ve already done.

Suppose for the sake of contradiction that there are n > #(H) elements α1, α2, . . . , αn ∈ L which are linearly
independent over F . Define

V =
{

(c1, c2, . . . , cn) ∈ Ln :
∑

j
cjh(αj) = 0 ∀h ∈ H

}
.

Problem 24.3. Show that V is an L-vector subspace of Ln and that H takes V to itself.

Problem 24.4. Show that dimL V > 0.

Problem 24.5. Deduce a contradiction, and explain why you have proved [L : F ] = #(H).

Problem 24.6. Show that H = Aut(L/F ).

Artin’s Lemma gives us a wide source of Galois extensions:

Problem 24.7. Let L, H and F be as in Artin’s Lemma. Show that [L : F ] is Galois.



25. THE GALOIS CORRESPONDENCE

Recall:
Theorem/Definition Let L/K be a field extension of finite degree. The following are equivalent:

(1) We have # Aut(L/K) = [L : K].
(2) The fixed field of Aut(L/K) is K.
(3) For every θ ∈ L, the minimal polynomial of θ over K is separable and splits in L.
(4) L is the splitting field of a separable polynomial f(x) ∈ K[x].

A field extension L/K which satisfies these equivalent definitions is called Galois.

Given a subfield F with K ⊆ F ⊆ L, we write Stab(F ) for the subgroup of G fixing F ; given a subgroup H of
Gal(L/K), we write Fix(H) for the subfield of L fixed by H . Our next main goal will be to show:

The fundamental Theorem of Galois theory Let L/K be a Galois extension with Galois group G. The maps
Stab and Fix are inverse bijections between the set of subgroups of G and the set of intermediate fields F with
K ⊆ F ⊆ L. Moreover, if F1 ⊆ F2, then Stab(F1) ⊇ Stab(F2) and [Stab(F1) : Stab(F2)] = [F2 : F1]. If
H1 ⊆ H2 then Fix(H1) ⊇ Fix(H2) and [Fix(H1) : Fix(H2)] = [H2 : H1].

We start by proving some basic results about Fix and Stab.

Problem 25.1. Let L/K be Galois and let F be a field with K ⊆ F ⊆ L. Show that L/F is Galois and identify
Gal(L/F ) with a subgroup of Gal(L/K).

Problem 25.2. (1) Show that, if F1 ⊆ F2 then Stab(F1) ⊇ Stab(F2).
(2) Show that, if H1 ⊆ H2 then Fix(H1) ⊇ Fix(H2).

Problem 25.3. (1) Show that Stab(Fix(H)) ⊇ H .
(2) Show that Fix(Stab(F )) ⊇ F .

The Fundamental Theorem tells us that both of the⊇’s in Problem 25.3 are actually equality, but we don’t know that
yet.

We now give examples. Here is a table of the subgroups of S3:

S3

A3 〈(12)〉 〈(13)〉 〈(23)〉

{e}

Problem 25.4. Let L = Q(x1, x2, x3), let S3 act on L by permuting the variables and let K = Fix(S3). Describe
the subfield of L fixed by each of the subgroups of S3.

Problem 25.5. Let L be the splitting field of x3− 2 over Q. We number the roots of x3− 2 as 3
√

2, ω 3
√

2 and ω2 3
√

2,
where ω is a primitive cube root of 1. Described the subfield of L fixed by each of the subgroups of S3.

Now we prove the theorem!

Problem 25.6. Let L/K be a Galois extension. Let F be a field with K ⊆ F ⊆ L.

(1) Show that L/F is Galois.
(2) Show that Aut(L/F ) is the subgroup Stab(F ) of Aut(L/K).
(3) Show that Fix(Stab(F )) = F . Hint: What can you say about [L : Fix(Stab(F ))]?

Problem 25.7. Let L/K be a Galois extension with Galois groupG. LetH be a subgroup ofG and let F = Fix(H).
Show that Stab(Fix(H)) = H .

Problem 25.8. Check the remaining claims of the Fundamental Theorem.



26. COROLLARIES OF THE FUNDAMENTAL THEOREM

You have now proved:

The Fundamental Theorem of Galois theory Let L/K be a Galois extension with Galois group G. The maps
Stab and Fix are inverse bijections between the set of subgroups of G and the set of intermediate fields F with
K ⊆ F ⊆ L. Moreover, if F1 ⊆ F2, then Stab(F1) ⊇ Stab(F2) and [Stab(F1) : Stab(F2)] = [F2 : F1]. If
H1 ⊆ H2 then Fix(H1) ⊇ Fix(H2) and [Fix(H1) : Fix(H2)] = [H2 : H1].

We proceed to corollaries and related results.

Problem 26.1. Let L/K be a Galois extension with Galois group G. Let H be a subgroup of G with corresponding
subfield F .

(1) For σ ∈ G, show that the subfield σ(F ) corresponds to the subgroup σHσ−1.
(2) Show that the following are equivalent:

• The extension F/K is Galois.
• For all θ ∈ F and all σ ∈ G, we have σ(θ) ∈ F .
• For all θ ∈ F and all σ ∈ G, we have θ ∈ σ(F ).
• The subgroup H of G is normal.

(3) Suppose that the above conditions hold. Show that Gal(F/K) ∼= G/H .

Problem 26.2. Let’s do an old QR problem! Let ζ ∈ C be a root of unity. Show that 21/3 6∈ Q(ζ).

Problem 26.3. Let K be a field and let L1, L2, . . . , Lr be finite Galois extensions of K.

(1) Show that there is a Galois extension M of K such that all of the Lj embed into M and the Lj generate M
as a field. (Hint: Take the splitting field of an appropriate polynomial.)

(2) Show that Gal(M/K) is isomorphic to a subgroup of
∏

Gal(Lj/K).

Problem 26.4. Let L/K be a Galois extension with Galois group G. Suppose that G is a 2-group.

(1) Show that there a chain of subfields K = K0 ⊂ K1 ⊂ · · · ⊂ KN = L with [Kj+1 : Kj ] = 2.
(2) Suppose that the characteristic of K is not 2. Show that, in the preceeding chain, we can find elements

φj ∈ Kj such that Kj+1
∼= Kj(

√
φj).

(3) (Characterization of constructible numbers) Let θ be algebraic over Q and let L be the Galois closure of
Q(θ). Show that θ is constructible1 if and only if [L : Q] is a power of 2.

(4) (Gauss’s construction of the 17-gon) Show that a primitive 17-th root of unity is constructible.

Problem 26.5. The following problem is on the homework, check that everyone can solve it: Let K be an infinite
field, let V be a finite dimensional K-vector space and let H1, H2, . . . , HN be finitely many proper K-subspaces of
V . Show that there is an element of V not in any Hj .

Problem 26.6. Let L/K be a Galois extension.

(1) Show that there are only finitely many fields F with K ⊆ F ⊆ L.
(2) Assume furthermore that K is infinite. For every F with K ⊆ F ⊆ L, show that there is an element θ ∈ F

which is not in F ′ for any K ⊆ F ′ ( F .
(3) (The primitive element theorem) Let K be an infinite field and let L be a separable extension of finite

degree. Then there is θ ∈ L such that L = K(θ).

Remark. Given a finite degree field extension L/K, an element θ of L such that L = K(θ) is called primitive.
We have just show that separable extensions of infinite fields have primitive elements. It is also true that, if L and
K are finite, then L has a primitive element; the simplest proof I know is that the multiplicative group L× will be
cyclic and a generator for this group clearly must be primitive. The simplest example of an extension without a
primitive element is Fp(x, y)/Fp(xp, yp): Every element θ of Fp(x, y) has θp ∈ Fp(xp, yp), so any such element
only generates an extension of degree p inside this degree p2 extension.

1To make this problem easier, I will allow you to take square roots of negative, and more generally of complex numbers, when discussing
constructibility.



27. SOLVABLE EXTENSIONS

Throughout this worksheet, let F be a field of characteristic zero.

Problem 27.1. Let K be the splitting field of xn − 1 over F . Show that Gal(K/F ) is abelian.

Problem 27.2. Let c ∈ F and let K be the splitting field of xn − c over F . Show that Gal(K/F ) is solvable.

A field extension K/F is called solvable if there is a Galois extension L/F with K ⊆ L and Gal(L/F ) solvable.

Problem 27.3. Let K/F be a solvable extension. Let K ′ be an extension of K which is of the form K[θ] where
θm ∈ K for some θ ∈ K ′. Show that K ′/F is solvable.

Problem 27.4. Let F be a field and let K1/F , K2/F , . . . , Kr/F be solvable extensions of F . Show that there is a
solvable extension M of F into which all the Kj embed. (Hint: See Problem 26.3.)

Problem 27.5. (The unsolvability of the quintic) Let f(x) be a degree 5 separable polynomial in F [x] and let L
be the splitting field of f over F . Suppose that Gal(L/F ) is A5 or S5. Show that L is not contained in any solvable
extension of F .

The point of the next problem is to drive home that we have completed the story of the quintic.

Problem 27.6. Let f(x) be a degree 5 separable polynomial in Q[x] and let L be the splitting field of f over Q.
Suppose that Gal(L/Q) is A5 or S5. Show that the roots of f cannot be expressed in terms of rational numbers
using +, −, ×, ÷ and m

√ .



28. KUMMER’S THEOREM AND GALOIS’S CRITERION FOR RADICAL EXTENSIONS

On the previous worksheet we showed that, if we adjoin elements to a field by taking m-th roots, we will never leave
the solvable fields. On this worksheet, we will prove a converse.

Here is the set up for problems 28.1 through 28.4: Let K be a field where n 6= 0 and let ζ ∈ K be a primitive n-th
root of unity. Let L/K be a Galois extension whose Galois group is cyclic of order n and let g generate Gal(L/K).

Problem 28.1. Show that, as a K-vector space, L splits up as
⊕n−1

j=0 Lj where Lj := {x ∈ L : g(x) = ζjx}.

Problem 28.2. Let J ⊆ Z/nZ be {j : Lj 6= (0)}.

(1) Show that J is a subgroup of Z/nZ.
(2) Show that J = Z/nZ. (Hint: All subgroups of Z/nZ are of the form dZ/nZ for some divisor d of n. Think

about gn/d.)
(3) Show that dimK Lj = 1

Problem 28.3. With notation as in the previous problems, let α ∈ Lj and β ∈ Lk. Show that αβ ∈ Lj+k.

Problem 28.4. Let α ∈ L1 and put θ = αn. Show that L = K(θ1/n).

You have now proved:

Kummer’s Theorem Let K be a field where n 6= 0 and suppose that K contains a primitive n-th root of unity. Let
L/K be a Galois extension whose Galois group is cyclic of order n. Then L = K(θ1/n) for some θ ∈ K.

Problem 28.5. Let L/K be a solvable extension Galois extension with solvable Galois group of order N . Suppose
that N 6= 0 in K and that K contains a primitive N -th root of unity. Show that there is a chain of subfields
K = K0 ⊂ K1 ⊂ · · · ⊂ Kr = L such that Kj+1 = Kj(θ

1/dj
j ) for some θj ∈ Kj and some dj dividing N .

We are now ready to prove

Galois’s characterization of equations solvable by radicals: Let θ be algebraic over Q and let K be the Galois
closure of Q(θ). There is a formula for θ using +, −, ×, ÷, d

√ if and only if Gal(K/Q) is solvable.

We have already shown that, if a radical formula for θ exists, then Gal(K/Q) is solvable. We now prove the
converse:

Problem 28.6. Let K be a Galois extension of Q with Gal(K/Q) solvable of order N .

(1) Show that there is a solvable extension L of Q that contains both K and a primitive N -th root of unity.
(2) Finish the proof of Galois’s criterion.



29. SYMMETRIC POLYNOMIALS AND COMPUTING GALOIS GROUPS

This worksheet attempts to address two questions from past classes:

(1) “Is there an algorithm to compute Galois groups?” and
(2) What is the relationship between symmetries of polynomials and Galois symmetries?

It will be important to remain a careful distinction between formal polynomials, and those polynomials evaluated at
specific algebraic numbers. I’ll use capital letters for the former, and for the fields that contain them, and lower case
letters for the latter.

Let f(x) = xn − e1x
n−1 + e2x

n−2 − · · · ± en be a separable polynomial in Q[x], let r1, . . . , rn be the roots of f in
C and let ` = Q(r1, . . . , rn). So we identify Gal(`/Q) with a subgroup of Sn.

Let L = Q(R1, . . . , Rn) and let K be the field of symmetric rational functions in L, so K = Q(E1, . . . , En) where
the Ej are the elementary symmetric polynomials, so

∏
(x−Rj) = xn − E1x

n−1 + E2x
n−2 − · · · ± En.

Let H ∈ Q[R1, . . . , Rn]. Let Γ be the subgroup {γ ∈ Sn : H(R1, . . . , Rn) = H(Rγ(1), . . . , Rγ(n))}. As an
example, if H = R2

1R2 +R2
2R3 +R2

3R1, then Γ = 〈(123)〉. Let h be the complex number H(r1, . . . , rn).

Problem 29.1. Suppose that Gal(`/Q) ⊆ Γ. Show that h ∈ Q.

Problem 29.2. Suppose that, for σ 6∈ Γ, we have H(r1, . . . , rn) 6= H(rσ(1), . . . , rσ(n)). Then show that h ∈ Q if
and only if Gal(`/Q) ⊆ Γ.

So, we can test whether Gal(`/Q) is contained in a particular subgroup of Sn by testing whether or notH(r1, . . . , rn) ∈
Q, subject to needing the extra hypothesis that, if H(R1, . . . , Rn) 6= H(Rσ(1), . . . , Rσ(n)) then H(r1, . . . , rn) 6=
H(rσ(1), . . . , rσ(n)).

The next problems discuss two approaches to teach whether h ∈ Q. As our running example, we will look at the
cubics x3− 4x− 1 and x3 +x2− 2x− 1 and test whether their Galois groups are contained in the subgroup 〈(123)〉
of S3. We’ll look at the polynomial H(R1, R2, R3) = R2

1R2 +R2
2R3 +R2

3R1 which, indeed, has symmetry group
〈(123)〉.

First approach

Problem 29.3. Suppose that all the ej (the coefficients of f(x)) are integers and let H ∈ Z[R1, . . . , Rn]. Show that
h ∈ Q if and only if h ∈ Z.

This is useful, because it means that we can just compute h(r1, . . . , rn) to enough numerical accuracy to determine
whether or not it is an integer.

Example: We have x3 − 4x− 1 = (x− α1)(x− α2)(x− α3) and x3 + x2 − 2x− 1 = (x− β1)(x− β2)(x− β3)
where (α1, α2, α3) = (−1.8608,−0.2541, 2.1149) and (β1, β2, β3) = (−1.8019,−0.4450, 1.2470). We compute

α2
1α2 + α2

2α3 + α2
3α1 = −9.066 β2

1β2 + β2
2β3 + β2

3β1 = −4.000.

Thus, in the first case, the Galois group cannot be contained in 〈(123)〉 and, in the second, it is highly likely to be.
Second approach

G(x) =
∏

σ∈Γ\Sn

(
x−H(Rσ(1), . . . , Rσ(n))

)
.

Here the product if over cosets of Γ\Sn, choosing one element from each coset.

Problem 29.4. Explain why the product is well defined, independent of the choice of element from each coset.

Problem 29.5. Show that the coefficients of G lie in Q[E1, . . . , En] (this is just quoting a very old problem).

Let g(x) be the polynomial in Q[x] that we get by evaluating the coefficients of G at Ej = ej .

Problem 29.6. Show that h is a root of g. Conclude that, if Gal(`/Q) ⊆ Γ, then g has a rational root.

Problem 29.7. Suppose g has a rational root of multiplicity 1. Show that there is some σ ∈ Sn such that Gal(`/Q) ⊆
σΓσ−1.



Our running example: We have

(x−R2
1R2 −R2

2R3 −R2
3R1)(x−R2

2R1 −R2
3R2 −R2

1R3) = x2 − (E1E2 − 3E3)x+ (E3
2 − 6E1E2E3 +E3

1E3).

EvaluatingE1E2−3E3 andE3
2−6E1E2E3+E3

1E3 at the coefficients of our two example cubics gives: x2+3x−55
and x2 − x− 12 respectively. The first does not have a rational root and the second does, so the splitting field of the
first cubic does not have Galois group contained in 〈(123)〉 and the second does. In approach, all computations are
done with rational numbers, so there is no fear of round off error. However, the computations are much larger, and
you have to deal with the complication of finding an Sn-conjugate of the correct group rather than the group itself.

Example – the alternating group: Homework problem 9.4 was an example of this approach: Let ∆ =
∏
i<j(Ri −

Rj) and let Φ = ∆2, so Φ is a symmetric polynomial. The symmetry group of ∆ is An, and the minimal polynomial
of ∆ is x2 − Φ, so we get that Gal(`/Q) ⊂ An if and only if Φ(r1, . . . , rn) is a square. The polynomial Φ is called
the discriminant.
Example – constructibility of roots of quartics: Let Γ be the subgroup 〈(12), (34), (13)(24)〉 of S4; this is a
2-Sylow subgroup. We have

(y−R1R2−R3R4)(y−R1R3−R2R4)(y−R1R4−R2R3) = y3−E2y
2+(E1E3−E4)y−(E3

1 +E2
1E4−4E2E4).

Let ` be the splitting field of a quartic x4 − e1x
3 + e2x

2 − e3x+ e4. Then Gal(`/Q) is contained in a conjugate of
Γ if and only if Gal(`/Q) is a 2-group (by the second Sylow theorem). And Γ is a 2-group if and only if the roots
of x4 − e1x

3 + e2x
2 − e3x+ e4 are constructible. So we deduce that the roots of x4 − e1x

3 + e2x
2 − e3x+ e4 are

constructible if and only if y3 − e2y
2 + (e1e3 − e4)y − (e3

1 + e2
1e4 − 4e2e4) has a rational root.



30. TRANSCENDENCE BASES AND TRANSCENDENCE DEGREE

For most of this class, we have discussed field extensions of finite degree. We will now discuss a notion of “size”
for extensions of infinite degree.

Let K/k be a field extension and let θ1, . . . , θr ∈ K.

Definition: We say that θ1, . . . , θr are algebraically independent over k if, for all nonzero polynomials
f(t1, . . . , tr) ∈ k[t1, . . . , tr], we have f(θ1, . . . , θr) nonzero.
Definition: The algebraic span of θ1, . . . θr in K over k is the set of those φ ∈ K which are algebraic over
k(θ1, . . . , θr). We say that θ1, . . . , θr is an algebraic spanning set for K over k if every φ ∈ K is algebraic over
k(θ1, . . . , θr).
Definition: We say that θ1, . . . , θr is a transcendence basis forK over k if θ1, . . . θr is both algebraically independent
and an algebraic spanning set.

The analogy with linear algebra should be clear. We start by showing the analogue of “finitely generated vector
spaces have bases”.

Problem 30.1. Suppose that θ1, . . . , θr is an algebraic spanning set for K over k. Show that there is some subset of
{θ1, . . . , θr} which is a transcendence basis for K over k.

We now prove some useful lemmas:

Problem 30.2. Let θ1, . . . , θr ∈ K and let 0 < q < r. Show that θ1, . . . , θr are an algebraic spanning set over k if
and only if θq+1, . . . , θr are an algebraic spanning set over k(θ1, . . . , θq).

Problem 30.3. Let θ1, . . . , θr ∈ K and let 0 < q < r. Show that θ1, . . . , θr are algebraically independent over k if
and only if the following two conditions hold:

• θ1, . . . , θq are algebraically independent over k and
• θq+1, . . . , θq+1 are algebraically independent over k(θ1, . . . , θq).

We can now prove the analogue of “linearly independent sets can be extended to bases”:

Problem 30.4. Let θ1, θ2, . . . , θr be algebraically independent over k. Let φ1, . . . , φs be an algebraic spanning set
for K over k. Show that there is some subset S of {φ1, . . . , φs} such that {θ1, . . . , θr} ∪ S is a transendence basis
for K over k.

We now start in on proving that all transcendence bases have the same size.

Problem 30.5. Let α1, α2, . . . , αp be an algebraic spanning set for K over k. Let β ∈ K be not algebraic over k.
Show that there is some index j such that α1, α2, . . . , αj−1, β, αj+1, . . . , αp is an algebraic spanning set for K over
k.

Problem 30.6. Let α1, α2, . . . , αp be an algebraic spanning set for K over k and let β1, . . . , βq be algebraically
independent over k. Show that p ≥ q. Hint: Induct on the number of elements of {β1, . . . , βq} which are not in
{α1, . . . , αp}.

Problem 30.7. Show that any two finite transcendence bases of K over k have the same size. This size is called the
transcendence degree of K over k.

Remark: This worksheet is deliberately written to avoid the Axiom of Choice. If you are comfortable with the
Axiom of Choice, then we can define infinite transcendence bases in the obvious way and show that every field
extension has a transcendence basis, and that any two transcendence bases have the same cardinality.



A. ABELIAN EXTENSIONS

We understand groups by assembling them from simpler groups. In this worksheet, we will consider the case that
we have a group G and an abelian group A, and we want to understand extensions

0→ A
exp−→ E

π−→ G→ 1.

I find it generally helpful to write A additively, so I’ll call the map A → E by the name exp. Throughout this
worksheet, A will denote an abelian group.
Problem A.1. Suppose that we have a short exact sequence 0 → A → E → G → 1. Show that the conjguation
action of E on A factors through the quotient G.

Thus, classifying extensions 0 → A → E → G → 1 breaks down to (1) classifying actions of G on A and (2) for
each action of G on A, determining all ways to extend it to a group E. We’ll write ρ : G → Aut(A) for the action
of G on A.

For any abelian group A and action ρ of another group G on A, we can always form the semidirect product AoρG.
But, in general, there are many other options:

Problem A.2. Show that all of the following groups can play the role of E in a short exact sequence

0→ C2 → E → C2
2 → 1.

(1) C3
2 .

(2) C4 × C2.
(3) The subgroup {±1,±i,±j,±k} of the quaternions.
(4) The group of symmetries of a square.

Given a map π : E → G, recall that a right inverse of π is a map σ : G→ E obeying π(σ(g)) = g.

Problem A.3. Let 0→ A
exp−→ E

π−→ G→ 1 be a short exact sequence and let σ : G→ E be a set-theoretic right
inverse to π. Show that every element of E can be uniquely written in the form exp(a)σ(g) for a ∈ A and g ∈ G.

Problem A.4. Let 0 → A
exp−→ E

π−→ Cn → 1 be a short exact sequence. Show that E is abelian. (Hint: Choose
your right inverse σ to make this computation easy.)

Let 0 → A
exp−→ E

π−→ Cn → 1 be a short exact sequence and let σ be a right inverse of π. For g1 and g2 ∈ G,
define ψ(g1, g2) by

σ(g1)σ(g2) = exp(ψ(g1, g2))σ(g1g2).

Problem A.5. Write a formula for the element a such that exp(a1)σ(g1) exp(a2)σ(g2) = exp(a)σ(g1g2) in terms
of a1, a2, g1, g2, ρ and ψ.

Problem A.6. Show that

ψ(g1, g2)− ψ(g1, g2g3) + ψ(g1g2, g3)− ρ(g1) (ψ(g2, g3)) = 0. (∗)

A function ψ : G→ A obeying (∗) is called a 2-cocycle.

Problem A.7. Let ψ be a 2-cocycle. Show that your formula from Problem A.5 defines an associative multiplication
on the set of ordered paris (a, g), with a ∈ A and g ∈ G.

Thus, every extension can be described using 2-cocycles. However, this description is not unique.

A function ψ : G2 → A is called a 2-coboundary if there is a function α : G→ A such that

ψ(g1, g2) = α(g1)− α(g1g2) + ρ(g1)α(g2) (†)
Problem A.8. Show that every 2-coboundary is a 2-cocycle.

Problem A.9. Let 0→ A→ E
π−→ G→ 1 be an extension and let σ1, σ2 : G→ E be two right inverses of π. Let

ψ1 and ψ2 be the corresponding 2-cocyles. Show that ψ1 − ψ2 is a 2-coboundary.

Problem A.10. Conversely, let ψ1 and ψ2 be two 2-cocycles which differ by a coboundary. Show that the corre-
sponding extensions are isomorphic.



B. DERIVATIONS AND TRANSCENDENCE DEGREE

Definition: Let R be a commutative ring and let M be an R-module. A derivation is a map D : R→M satisfying
D(u+ v) = D(u) +D(v) and D(uv) = uD(v) + vD(u).

The following facts were checked on the homework:

Problem B.1. Let k be a field, M a k[x]-module, d : k →M a derivation and m an element of M . Show that there
is a unique derivation D : k[x]→M which restricts to d on k and obeys D(x) = m.

Problem B.2. LetK/k be a separable field extension of finite degree, letM be aK-vector space and let d : k →M
be a derivation. Show that there is a unique derivation D : K →M which restricts to d on K.

Please also check the following:

Problem B.3. Let M be a vector space over k(x), and let d : k[x] → M be a derivation. Show that d has a unique
extension to a derivation D : k(x) → M . (Recall that k[x] is the ring of polynomial with coefficients in k and that
k(x) is the field of fractions of k[x].)

Definition: Let k be a field and K a larger field containing k. We define DK/k to be the set of derivations K → K
which obey D(a) = 0 for a ∈ k. This is a K-vector space, where scalar multiplication is defined by (fD)(g) =
f ·D(g) for f and g ∈ K.

From now on, let k be a field of characteristic zero. Since we are in characteristic zero, all algebraic field
extensions are automatically separable.

Problem B.4. Show that Dk(x1,...,xr)/k is a k(x1, . . . , xr)-vector space of dimension r. (Recall that k(x1, . . . , xr)
is the fraction field of the polynomial ring k[x1, . . . , xr].)

Problem B.5. Let K be a finitely generated field extension of k with transcendence degree r. Show that DK/k is a
K-vector space of dimension r.

Definition: Let k be a field and K a larger field containing k. We define Ω1
K/k to be HomK(DK/k,K), in other

words, the dual vector space to DK/k. For u ∈ K, we define the element du of Ω1
K/k to be the map D → D(u)

from DK/k to K.

Problem B.6. (1) Show that dx1, . . . , dxr is a basis for Ω1
k(x1,...,xr)/k.

(2) For f ∈ k(x1, . . . , xr), show that df =
∑ ∂f

∂xj
dxj .

Problem B.7. Let g1, g2, . . . , gs ∈ k(x1, . . . , xr). Let K ⊆ k(x1, . . . , xr) be the subfield generated by the gj .

(1) Show that the transcendence degree of K of k is equal to the dimension of the subspace of Ω1
k(x1,...,xr)/k

spanned by the dgj .
(2) Show that the gj are algebraically independent over k if and only if the dgj are linearly independent over

k(x1, . . . , xr).
(3) Show that the gj algebraically span k(x1, . . . , xr) if and only if the dgj span Ω1

k(x1,...,xr)/k as a k(x1, . . . , xr)-
vector space.

This means that, in characteristic zero, we can study algebraic independence using techniques from ordinary linear
algebra. For example, given two functions f and g ∈ C(x, y), these functions will be a transcendence basis if and

only if det

[
∂f
∂x

∂f
∂y

∂g
∂x

∂g
∂y

]
is nonzero.
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