PROBLEM SET 5: DUE WEDNESDAY, FEBRUARY 12

Please see the course website for guidance on collaboration and formatting your problem sets.

Problem 5.1. Recall that Z(G) is the center of a group G, and that a *central series* of G is a sequence of subgroups $G_0 \triangleleft G_1 \triangleleft G_2 \triangleleft \cdots \triangleleft G_N$ where $G_{i+1}/G_i \subseteq Z(G/G_i)$ for all i.

- (1) The *upper (or ascending) central series* of G is defined inductively by $U_0 = \{e\}$ and $U_{k+1} = \pi_k^{-1}(Z(G/U_k))$, where π_k is the projection $G \to G/U_k$. Let $\{e\} = G_0 \triangleleft G_1 \triangleleft G_2 \triangleleft \cdots$ be a central series with $G_0 = \{e\}$. Show that $G_k \subseteq U_k$.
- (2) The *lower (or descending) central series* is defined inductively by $L^0 = G$ and letting L^{k+1} be the group generated by all products $ghg^{-1}h^{-1}$ with $g \in G$ and $h \in L^k$. Let $G = G^0 \triangleright G^1 \triangleright G^2 \triangleright \cdots$ be a central series with $G^0 = G$ (note that we have reversed the direction of the numbering). Show that $L^k \subseteq G^k$.
- (3) Recall that a group G is called *nilpotent* if there is a central series $\{e\} = G_0 \triangleleft G_1 \triangleleft G_2 \triangleleft \cdots \triangleleft G_N = G$. Show that G is nilpotent, if and only if U_k is eventually G, if and only if L^k is eventually $\{e\}$.

Problem 5.2. Let *R* be a ring (not assumed commutative) and let *I* be a two sided ideal of *R*. We define I^m to be the two sided ideal generated by all products $x_1x_2 \cdots x_m$ for $x_1, x_2, \ldots, x_m \in I$. We define the ideal *N* to be *nilpotent* if there is a positive integer *m* such that $N^m = (0)$. Let *N* be a nilpotent ideal and let *U* be the group $\{1 + x : x \in N\}$. Show that *U* is a nilpotent group.¹

The next three problems are adapted from QR exams.

Problem 5.3. Let G be a group where $g^2h^2 = h^2g^2$ for all g and h.

- (1) Let N be the subgroup $\langle g^2 | g \in G \rangle$. Show that N is normal.
- (2) Show that G is solvable.

Problem 5.4. A group G is called *virtually solvable* if G has a normal subgroup N such that N is solvable and G/N is finite.

- (1) Show that a subgroup of a virtually solvable group is virtually solvable.
- (2) Show that a quotient of a virtually solvable group is virtually solvable.

Problem 5.5. Let G_1 and G_2 be groups and let S be a subgroup of $G_1 \times G_2$. Let H_i be the projection of S onto G_i and let $K_i = S \cap G_i$.

- (1) Show that K_i is normal in H_i .
- (2) Show that $H_1/K_1 \cong H_2/K_2$.

These problems do not use the current material, but will be useful in the future. Let k be a field and let k[x] be the ring of polynomials with coefficients in x. Recall that k[x] is a PID; you may use this fact freely in these problems.

Problem 5.6. Let $K \subset L$ be two fields and let a(x) and $b(x) \in K[x]$. Let g(x) be the *GCD* of a and b in K[x]. Show that g is also the *GCD* of a and b in L[x].

Problem 5.7. For a polynomial $f(x) = \sum f_j x^j \in k[x]$, we define the derivative f'(x) to be $\sum j f_j x^{j-1}$.

(1) For any two polynomials f(x) and $g(x) \in k[x]$, show that (f + g)'(x) = f'(x) + g'(x) and (fg)'(x) = f(x)g'(x) + f'(x)g(x). Note that your proof should work for any field k.

For a nonzero polynomial f(x) and an irreducible polynomial p(x), let $m_p(f)$ be the number of times that p appears in the prime factorization of f.

- (2) Let f and p be as above and suppose that $m_p(f) > 0$. Show that, if k has characteristic zero, then $m_p(f') = m_p(f) 1$.
- (3) Give an example to show that the above need not be true in nonzero characteristic.

¹This is the most direct conceptual connection I know between the uses of the word "nilpotent" in ring theory and in group theory. The actual historical origins of the word come from the following related case: Start with R being $n \times n$ upper-triangular real matrices, N being upper-triangular real matrices with 0's on the diagonal and U being upper-triangular real matrices with 1's on the diagonal. Let G be a Lie subgroup of U, then the Lie algebra g is a Lie subalgebra of N. The group G is a nilpotent group, and the Lie algebra g is a nilpotent Lie algebra. (We have not defined Lie groups, Lie algebras or what it means for a Lie algebra to be nilpotent.)