Problem 5.1. Let G be a group and let N be a subgroup. Show that the following are equivalent:

- (1) For all $g \in G$, we have $gNg^{-1} = N$.
- (2) All elements of G/N have the same stabilizer, for the left action of G on G/N.
- (3) Every left coset of N in G is also a right coset.
- (4) If $g_1N = g'_1N$ and $g_2N = g'_2N$, then $g_1g_2N = g'_1g'_2N$.

Definition. A subgroup N obeying the equivalent conditions of Problem 5.1 is called a *normal subgroup* of G. We write $N \leq G$ to indicate that N is a normal subgroup of G.

Problem 5.2. Let G be S_3 . Which of the following subgroups are normal?

- (1) The subgroup generated by (12).
- (2) The subgroup generated by (123).

Problem 5.3. Let G be a group and let N be a normal subgroup of G.

- (1) Prove or disprove: Let $\alpha: F \to G$ be a group homomorphism. Then $\alpha^{-1}(N)$ is normal in F.
- (2) Prove of disprove: Let $\beta: G \to H$ be a group homomorphism. Then $\beta(N)$ is normal in H.
- (3) At least one of the statements above is false. Find an additional hypothesis you could add to make it true.

Definition. Given a group G and an normal subgroup N, the *quotient group* G/N is the group whose underlying set is the set of cosets G/N with multiplication such that $(g_1N)(g_2N) = g_1g_2N$.

This definition makes sense by Part (4) of Problem 5.1. I won't make you check that this is a group, but do so on your own time if you have any doubt. Also, I won't make you check this, but the groups G/N and $N \setminus G$, defined in the obvious ways, are isomorphic.

Let $\phi: G \to H$ be a group homomorphism. Recall that the image and kernel of ϕ are $\text{Ker}(\phi) := \{g \in G : \phi(g) = 1\}$ and $\text{Im}(\phi) := \{\phi(g) : g \in G\}$.

Problem 5.4. Show that the kernel of ϕ is a normal subgroup of G.

Problem 5.5. Show that the "obvious" map from $G/\operatorname{Ker}(\phi)$ to $\operatorname{Im}(\phi)$ is an isomorphism.

We often discuss quotients using the language of short exact sequences:

Definition. A *short exact sequence* $1 \to A \xrightarrow{\alpha} B \xrightarrow{\beta} C \to 1$ is three groups A, B and C, and two group homomorphisms $\alpha : A \to B$ and $\beta : B \to C$ such that α is injective, β is surjective, and $\text{Im}(\alpha) = \text{Ker}(\beta)$.

I will occasionally write 0 instead of 1 at one end or the other of a short exact sequence. I do this when the adjacent group (meaning A or C) is abelian and it would feel bizarre to denote the identity of that abelian group as 1.

We'll write C_n for the abelian group $\mathbb{Z}/n\mathbb{Z}$. This is called the *cyclic group* of order n.

Problem 5.6. Show that there is a short exact sequence $1 \to C_m \to C_{mn} \to C_n \to 1$.

Problem 5.7. Show that there is a short exact sequence $1 \rightarrow C_3 \rightarrow S_3 \rightarrow S_2 \rightarrow 1$.

Problem 5.8. Show that there is a short exact sequence $1 \rightarrow C_2^2 \rightarrow S_4 \rightarrow S_3 \rightarrow 1$.

Problem 5.9. What is the relationship between Problems 5.7 and 5.8 and your computations on the first day of class involving $\{(\beta_1 + \omega\beta_2 + \omega^2\beta_3)^3, (\beta_1 + \omega^2\beta_2 + \omega\beta_3)^3\}$ and $\{(\gamma_1 + \gamma_2 - \gamma_3 - \gamma_4)^2, (\gamma_1 - \gamma_2 + \gamma_3 - \gamma_4)^2, (\gamma_1 - \gamma_2 - \gamma_3 + \gamma_4)^2\}$?