8. SEMIDIRECT PRODUCTS

Let A be a group and let C be a group with a left action on A by a map $\phi : C \to \operatorname{Aut}(A)$. In other words, we require that $\phi(c)(a_1 * a_2) = \phi(c)(a_1) * \phi(c)(a_2)$ as well as the usual left action axiom that $\phi(c_1c_2)(a) = \phi(c_1)(\phi(c_2)(a))$.

Definition. With the above notation, the *semidirect product* $A \rtimes_{\phi} C$ is defined as the set of ordered pairs $(a, c) \in A \times C$ with multiplication $(a_1, c_1) * (a_2, c_2) = (a_1 * \phi(c_1)(a_2), c_1 * c_2)$.

The subscript ϕ is often omitted when it is clear from context.

Note that we use a left action of C on A to define $A \rtimes C$. Likewise, given a right action of C on A, we define $C \ltimes A$. This may seem odd, but I promise it is less confusing this way.

Problem 8.1. Verify that $A \rtimes_{\phi} C$ is a group.

Problem 8.2. In the above setting, show that:

- (1) $\{(a, 1)\}\$ is a normal subgroup of $A \rtimes_{\phi} C$, isomorphic to A.
- (2) $\{(1,c)\}$ is a subgroup of $A \rtimes_{\phi} C$, isomorphic to C.
- (3) $\{(a,1)\} \cap \{(1,c)\} = \{(1,1)\}.$
- (4) Every element of $A \rtimes_{\phi} C$ can be written uniquely in the form (a, 1)(1, c) for $a \in A, c \in C$.

Problem 8.3. Let G be a group with subgroups A and C such that, for $c \in C$, we have $cAc^{-1} = A$. When this condition holds, we say that C *normalizes* A.

- (1) Show that $\{ac : a \in A, c \in C\}$ is a subgroup of G. We call this subgroup AC.
- (2) Suppose, in addition that $A \cap C = \{1\}$. Show that $AC \cong A \rtimes C$.
- (3) Suppose that $A \cap C = \{1\}$ and both that A normalizes C and C normalizes A. Show that $AC \cong A \times C$.

The rest of the worksheet is examples.

Problem 8.4. Give two actions of C_2 on C_3 such that $S_3 \cong C_3 \rtimes C_2$ for one action and $C_6 \cong C_3 \rtimes C_2$ for the other.

Problem 8.5. Let p be prime. Show that $C_{p^2} \ncong C_p \rtimes C_p$ for any action of C_p on C_p .

Let k be a field and let V be a k vector space; we'll write V_+ for V considered as an additive group. Let GL(V) be a group of invertible k-linear maps $V \to V$. Let Aff(V) be the group of maps $V \to V$ of the form $\vec{v} \mapsto a\vec{v} + \vec{b}$ for $a \in GL(V)$ and $\vec{b} \in V$.

Problem 8.6. Show that $Aff(V) \cong V_+ \rtimes GL(V)$.

Problem 8.7. Let $\dim_k V = n$. Show that $\operatorname{Aff}(V)$ is isomorphic to the group of $(n + 1) \times (n + 1)$ matrices of the form

*	*		*	*	
*	*		*	*	
:	÷	·	÷	:	
*	*		*	*	
0	0	•••	0	1	

¹It is possible that G = AC and $A \cap C = \{1\}$, yet neither of A nor C normalizes each other. An example is $G = S_4$ with A the three element subgroup generated by (123) and C the eight element subgroup generated by (1234) and (12)(34). In this case, we do not get to write G as a semidirect product.