Definition. Let G be a group. The *commutator subgroup* is the group generated by all products $ghg^{-1}h^{-1}$ for g and $h \in G$. It is denoted [G, G]. The commutator subgroup is also called the *derived subgroup*, and is sometimes also denoted G' or D(G).

Problem 9.1. Show that [G, G] is normal in G.

Problem 9.2. Show that G/[G, G] is abelian.

Definition. The quotient G/[G,G] is called the *abelianization* of G and denoted G^{ab} .

Problem 9.3. Prove the *universal property of the abelianization*: If G is a group, A is an abelian group and $\chi: G \to A$ is a group homomorphism, then there is a unique homomorphism $\phi: G^{ab} \to A$ such that the diagram below commutes:

Problem 9.4. Show that the commutator subgroup of S_n is A_n .

Problem 9.5. Show that the commutator subgroup of A_n is A_n for $n \ge 5$.

Remark. Way back in Problem 2.5, you showed that there are no nontrivial homomorphisms from A_5 to an abelian group. We can now state that result in a more sophisticated sounding way: The abelianization of A_5 is trivial.

Problem 9.6. Suppose that we have a short exact sequence $1 \to H \to G \to A \to 1$ where A is abelian. Show that $[G,G] \subseteq H$.

Problem 9.7. Many people believe that the every element in the commutator subgroup is of the form $ghg^{-1}h^{-1}$. This is need not be true. Let V be a vector space of dimension ≥ 4 over a field of characteristic $\neq 2$ and let G be the group whose underlying set is $V \times \bigwedge^2(V)$, with multiplication:

$$(v,\alpha) * (w,\beta) = (v+w,\alpha+\beta+v \wedge w).$$

You checked on the problem sets that G is a group.

- (1) Show that $(0, \alpha)$ is a commutator if and only if α is of the form $v \wedge w$.
- (2) Show that the commutator subgroup is all pairs $(0, \alpha)$ for $\alpha \in \bigwedge^2 V$.