
Problem 9.6. Let K ⊆ L ⊆M be a chain of fields, with [M : K] <∞.

(1) For θ ∈M , show that TL/K(TM/L(θ)) = TM/K(θ).
(2) For θ ∈M , show that NL/K(NM/L(θ)) = NM/K(θ).

Solution Let β1, . . .βm be an L-basis for M and let α1, . . . , α` be a K-basis for L. As we checked in class, αiβj is
then a K-basis for M . For φ ∈ L, let λ(φ) be the `× ` matrix giving multiplication by φ in the α-basis. Note that λ
is a map of rings from L to Mat`×`(K) and that, by definition, Tr λ(φ) = TL/K(φ).

For θ ∈ M , let [φjj′ ]1≤j,j′≤m be the matrix for multiplication by θ in the β-basis. Then multiplication by θ in the
αiβj basis is given by the (`m)× (`m) matrix made up of the `× ` blocks λ(φjj′).

It is now straightforward to do part (1). To take the trace of a matrix in block form (with the same block sizes in
rows and columns), we add up the traces of the diagonal matrices. So

TM/K(θ) =

m∑
j=1

Tr λ(φjj) = Tr λ

 m∑
j=1

φjj

 = Tr λ
(
TM/L(θ)

)
= TL/K(TM/L(θ)).

The corresponding computation for determinants is messy, but isn’t bad if we write mθ in rational canonical form.
To keep exposition simple, I’ll assume that M = L(θ), so that the rational canonical form has only one block. Let
the minimal polynomial of θ over L be xm − f1xm−1 + f2x

m−2 − · · ·+ (−1)mfm; note that fm = NM/L(θ). So,
if we choose the correct L-basis βj for M , then multiplication by θ is given by the matrix

(−1)m+1fm
1 · · · (−1)mfm−1

1 · · · (−1)m−1fm−2

1 · · · (−1)m−2fm−3

. . .
...

1 f1


.

If we then work in the αiβj basis for these β’s, we get the block matrix

(−1)m+1λ(fm)
Id` · · · (−1)mλ(fm−1)

Id` · · · (−1)m−1λ(fm−2)
Id` · · · (−1)m−2λ(fm−3)

. . .
...

Id` λ(f1)


.

The determinant of this is
detλ(fm) = NL/K(fm) = NL/K(NM/L(θ)).

The reader may wonder if we dropped a sign; we did not. If we move the top row of the matrix to the bottom, we
introduce `(m − 1) × ` = `2(m − 1) inversions. In the resulting matrix, the diagonal elements are m − 1 identity
matrices and one copy of (−1)m+1λ(fm); we have det(−1)m+1λ(fm) = (−1)`(m+1) detλ(fm). So our total sign
is (−1)`2(m−1)+`(m+1). We have `2(m− 1) + `(m+ 1) ≡ `(m− 1) + `(m+ 1) = 2`m ≡ 0 mod 2.



Problem 9.8. Let ω be a primitive cube root of unity in C. Let K = Q(ω) and write α 7→ α for the automorphism
ω 7→ ω−1 of K. For a nonzero element α of K, let L = K( 3

√
α, 3
√
α).

(1) Show that L/Q is a Galois extension.
(2) Let σ ∈ Gal(L/Q) show that either (1) there are integers b and c such that σ(ωi 3

√
α) = ωb+i 3

√
α and

σ(ωj 3
√
α) = ωc+j 3

√
α or else (2) there are integers b and c such that σ(ωi 3

√
α) = ωb−i 3

√
α and σ(ωj 3

√
α) =

ωc−j 3
√
α (for all integers i, j).

(3) If αα2 is a cube in K, show that Gal(L/Q) is abelian.

Solution To make the solution more readable, we assume α 6= α. Note that the polynomial (x − α)(x − α) has
coefficients in Q. The field L is the splitting polynomial of (x3 − α)(x3 − α), so L/Q is Galois.

For part (2), we must either have σ(ω) = ω or σ(ω) = ω−1.

In the first case, σ acts trivially on K, so σ(α) = α and σ must take 3
√
α to ωb 3

√
α for some b. We then have

σ(ωi 3
√
α) = σ(ω)iσ( 3

√
α) = ωiωb 3

√
α. We similarly have σ(ωj 3

√
α) = ωjωc 3

√
α for some c.

In the second case, we have σ(ω) = ω so σ(α) = α. So σ( 3
√
α) must be a cube root of α, say ωb 3

√
α. So

σ(ωi 3
√
α) = σ(ω)iσ( 3

√
α) = ω−iωb 3

√
α. Similarly, σ(ωj 3

√
α) = ω−jωc 3

√
α for some c.

We now more to part (3). Let αα2 = β3 so 3
√
α 3
√
α
2
= ωkβ for some k. Thus, for any σ ∈ Gal(L/K), we must have

σ
(

3
√
α 3
√
α
2
)
= 3
√
α 3
√
α
2
. We have σ ∈ Gal(L/K) if and only if σ is in the first case where σ(ωi 3

√
α) = ωb+i 3

√
α

and σ(ωj 3
√
α) = ωc+j 3

√
α. So σ

(
3
√
α 3
√
α
2
)
= 3
√
α 3
√
α
2

gives b+ 2c ≡ 0 mod 3 or, in other words, b ≡ c mod 3.

What about σ which are not in Gal(L/K)? I think the simplest route is to think about σ2. If σ(ωi 3
√
α) = ωb−i 3

√
α

and σ(ωj 3
√
α) = ωc−j 3

√
α then

σ2( 3
√
α) = σ(ωb

3
√
α) = ω−b+c 3

√
α and σ2( 3

√
α) = σ(ωc 3

√
α) = ω−c+b 3

√
α.

Using our previous result, we get that −b+ c ≡ b− c mod 3, which implies that b ≡ c mod 3.

So we have now reduced to the group to the smaller group of maps of the form ( 3
√
α, 3
√
α) 7→ (ωb 3

√
α, ωb 3

√
α) and

( 3
√
α, 3
√
α) 7→ (ωb 3

√
α, ωb 3

√
α), and this group is easily checked to be abelian.


