PROBLEM SET 1 – DUE SEPTEMBER 14

See the course website for policy on collaboration. This problem set contains a trick question!

Notation: The letter k denotes an algebraically closed field. For $X \subseteq k^n$, we write I(X) for the set of polynomials in $k[x_1, \ldots, x_n]$ which vanish on all points of X. For $S \subseteq k[x_1, \ldots, x_n]$, we write Z(S) for the set of points (a_1, \ldots, a_n) on which all polynomials in S vanish. Given a finitely generated k-algebra A, we write $\operatorname{MaxSpec}(A)$ for the set $\operatorname{Hom}_{k-\operatorname{alg}}(A, k)$.

- 1. We defined a subset X of k^n to be **Zariski closed** if X is of the form Z(S) for some $S \subseteq k[x_1, \ldots, x_n]$ or, equivalently, if X = Z(I(X)). In this problem, we justify this terminology by verifying that the Zariski closed sets obey the axioms of a topology. Check that:
 - (a) Any intersection of Zariski closed sets is Zariski closed.
 - (b) Any finite union of Zariski closed sets is Zariski closed.
 - (c) The sets \emptyset and k^n are Zariski closed.
- 2. Let X be the curve $y^2 = x^3 + x^2$ in \mathbb{A}^2 . We can parametrize X as $t \mapsto (t^2 1, t(t^2 1))$.
 - (a) What is the corresponding map $k[x,y]/\langle y^2-x^3-x^2\rangle \to k[t]$?
 - (b) Assume k does not have characteristic 2. Show that this map has image $\{f \in k[t] : f(1) = f(-1)\}$.
- 3. Let $R = k[x,y]/(y^2 x^3)$. Map $R \to k[t]$ by $x \mapsto t^2$ and $y \mapsto t^3$.
 - (a) Show that MaxSpec $k[t] \to \text{MaxSpec } R$ is bijective.
 - (b) Show that the inverse map is not regular.
- 4. Let $k[t] \times k[t]$ be the ring of ordered pairs (f(t), g(t)) of polynomials, with ring operations given by $(f_1, g_1) + (f_2, g_2) = (f_1 + f_2, g_1 + g_2)$ and $(f_1, g_1)(f_2, g_2) = (f_1 f_2, g_1 g_2)$.
 - (a) Write $k[t] \times k[t]$ as k[x,y]/I for some ideal I. (Hint: I suggest making x correspond to (t,t) and y correspond to (1,0).)
 - (b) Give a bijection between MaxSpec $k[t] \times k[t]$ and $k \sqcup k$.
 - (c) Map $k[t] \times k[t]$ to k[t] by $(f,g) \mapsto f$. What is the corresponding map of MaxSpec's from k to $k \sqcup k$?
 - (d) Map k[t] to $k[t] \times k[t]$ by $f \mapsto (f,0)$. What is the corresponding map of MaxSpec's from $k \sqcup k$ to k?
- 5. Let R be a commutative ring and r an element of R. Show that 1 rt is a unit of R[t] if and only if r is nilpotent in R. (**Nilpotent** means that $r^N = 0$ for some positive integer N.)
- 6. Let R be a commutative ring and let I be an ideal of R. Define \sqrt{I} (called the **radical** of I) to be $\{f \in R : \exists_{N \in \mathbb{Z}_{\geq 0}} f^N \in I\}$.
 - (a) Show that \sqrt{I} is an ideal.
 - (b) Show that $\sqrt{\sqrt{I}} = \sqrt{I}$.
- 7. We work inside the ring $k[x_{12}, x_{13}, x_{14}, x_{23}, x_{24}, x_{34}]$. We write M for the matrix

$$M := \begin{pmatrix} 0 & x_{12} & x_{13} & x_{14} \\ -x_{12} & 0 & x_{23} & x_{24} \\ -x_{13} & -x_{23} & 0 & x_{34} \\ -x_{14} & -x_{24} & -x_{34} & 0 \end{pmatrix}.$$

Let I_4 be the ideal generated by det M and let I_3 be the ideal generated by the determinants of the sixteen 3×3 submatrices of M.

- (a) One of the containments $I_3 \subset I_4$, $I_4 \subset I_3$ is true and the other is false; which is which?
- (b) Letting $I_a \subsetneq I_b$ denote the true relation, show that $\sqrt{I_a} = \sqrt{I_b} \subsetneq I_a \subsetneq I_b$.