Problem Set 10 – Due November 30

Note extended due date, in light of Thanksgiving break.

See the course website for policy on collaboration.

- 1. In this problem, we will build an affine variety X which is smooth in codimension 1 and a function in Frac(X) which is regular in codimension 1, but not regular. Let A be the subring of k[x,y] generated by x^4 , x^3y , xy^3 and y^4 ; we will abbreviate these monomials as p, q, s, t respectively. Let X = MaxSpec A. Let z be the point p = q = s = t = 0 of X. Let r be the element $x^2y^2 = q^2/p = s^2/t \in Frac(A)$.
 - (a) Show that $\dim X = 2$.
 - (b) Show that the distinguished opens $\{p \neq 0\}$ and $\{t \neq 0\}$ cover $X \setminus \{z\}$.
 - (c) Show that the distinguished opens $\{p \neq 0\}$ and $\{t \neq 0\}$ are smooth. So X is smooth away from a single point, of codimension 2.
 - (d) Show that r is regular on $X \setminus \{z\}$.
- 2. Consider \mathbb{P}^n with coordinates $(x_0: x_1: \dots: x_n)$. Then $d\left(\frac{x_1}{x_0}\right) \wedge d\left(\frac{x_2}{x_0}\right) \wedge \dots + d\left(\frac{x_n}{x_0}\right)$ is a rational n-form on \mathbb{P}^n . Show that this n-form has no zeroes, is regular on $\{x_0 \neq 0\}$, and has a pole of order n+1 along the hyperplane $x_0=0$.
- 3. Let X be a smooth 1-dimensional variety, let x_0 be a point of X and let t be a regular function on X generating the maximal ideal at x_0 .
 - (a) Let ω be a 1-form on $X \setminus \{x_0\}$. Show that ω can be uniquely written in the form

$$\omega = a_{-N} \frac{dt}{t^N} + a_{-N+1} \frac{dt}{t^{N-1}} + \dots + a_{-1} \frac{dt}{t} + \eta \quad (*)$$

where η is a 1-form on X. Define $\operatorname{res}_{t,x_0} \omega = a_{-1}$.

In this problem we will show that $\operatorname{res}_{t,x_0}\omega$ is independent of the choice of t. Let u be another generator of \mathfrak{m}_{x_0} , we'll show that $\operatorname{res}_{t,x_0}(\omega) = \operatorname{res}_{u,x_0}(\omega)$. To make the proof easier, assume that $\operatorname{char}(k) = 0$, though this is also true in finite characteristic.

- (b) Let g be a regular function on $X \setminus \{x_0\}$. Show that $\operatorname{res}_{u,x_0} dg = 0$.
- (c) In the notation of (*), show that $\operatorname{res}_{u,x_0} a_{-i} \frac{dt}{t^i} = 0$ for $i \geq 2$. Show that $\operatorname{res}_{u,x_0} \eta = 0$. Show that $\operatorname{res}_{u,x_0} dt/t = 1$. Conclude that $\operatorname{res}_{u,x_0} \omega = \operatorname{res}_{t,x_0} \omega$. From now on, we will just write $\operatorname{res}_{x_0}(\omega)$.
- (d) Let ω be a rational 1-form on \mathbb{P}^1 . Show that $\sum_{x_0 \in \mathbb{P}^1} \operatorname{res}_{x_0}(\omega) = 0$. (Hint: Partial fractions!)
- 4. Recall that an integral domain A is called **normal** if, for all $\theta \in \operatorname{Frac}(A)$, if θ satisfies a monic polynomial with coefficients in A, then θ is in A. We call an affine variety X **normal** if its ring of regular functions is normal. In this problem, we will see that normality is a local condition. Let X be an irreducible affine variety with ring of regular functions A.
 - (a) Suppose that X has an open cover $X = \bigcup U_i$ where the U_i are normal. Show that X is normal. (Hint: Being a regular function is a local condition.)
 - (b) Suppose that A is a normal ring. Show that any localization $f^{-1}A$ is normal.
 - (c) Show that X is normal if and only if every affine open subset of X is normal, if and only if X has an open cover by normal affine varieties.