PROBLEM SET 11 – DUE DECEMBER 7 (NOTE EXTENDED DUE DATE) See the course website for policy on collaboration.

- 1. Let X be a smooth irreducible variety. Show that X is normal. (Hint: Reduce to the affine case. Let $\theta \in \operatorname{Frac}(A)$ obey $\theta^n = \sum_{j=0}^{n-1} a_j \theta^j$. Show that, for each divisor D, we have $v_D(\theta) \ge 0$.)
- 2. This problem gives an example of a linear system with a base point. Consider \mathbb{P}^2 with coordinates (x : y : z). Let H be the line z = 0. Then $H^0(\mathbb{P}^2, \mathcal{O}(2H))$ is the vector space with basis $\{1, x/z, y/z, (x/z)^2, (x/z)(y/z), (y/z)^2\}$. Let V be the subspace spanned by $\{x/z, y/z, (x/z)^2, (x/z)(y/z), (y/z)^2\}$.
 - (a) Verify that the (0:0:1) is a base point of V, and no other point is. Set $U = \mathbb{P}^2 \setminus \{(0:0:1)\}$. Let $\phi: U \to \mathbb{P}^4$ be the corresponding map. Let X be the closure of $\phi(U)$ in \mathbb{P}^4 .
 - (b) Verify that $X \setminus \phi(U)$ is isomorphic to \mathbb{P}^1 . Conclude that ϕ cannot be extended to a regular map $\mathbb{P}^2 \to \mathbb{P}^4$.
- 3. We recall from the previous problem set the basic equations of the hyperelliptic curve. Assume the characteristic of k is not 2. Let $a_{2g+1}x^{2g+1} + a_{2g}x^{2g} + \cdots + a_2x^2 + a_1x$ be a squarefree polynomial in x with $a_1a_{2g+1} \neq 0$. (Yes, the a_0 is meant to be missing.) Define the affine curves

$$X_{0} = \left\{ y_{0}^{2} = a_{2g+1}x_{0}^{2g+1} + a_{2g}x_{0}^{2g} + \dots + a_{2}x_{0}^{2} + a_{1}x_{0} \right\} \subset \mathbb{A}^{2}$$

$$X_{\infty} = \left\{ y_{\infty}^{2} = a_{2g+1}x_{\infty} + a_{2g}x_{\infty}^{2} + \dots + a_{2}x_{\infty}^{2g} + a_{1}x_{\infty}^{2g+1} \right\} \subset \mathbb{A}^{2}.$$

On previous problem sets, we showed that there is a smooth projective curve glued from two open sets isomorphic to X_0 and X_{∞} , with the gluing given by

 $x_0 = x_\infty^{-1}$ $y_0 = y_\infty x_\infty^{-(g+1)}$.

We perform some more useful computations with this example.

- (a) Let p_{∞} be the point $x_{\infty} = y_{\infty} = 0$ in X_{∞} . Show that x_0 has a pole of order 2 at p_{∞} and y_0 has a pole of order 2g + 1.
- (b) Let n be a positive integer. Show that the vector space of functions on X which are regular on X_0 and have a pole of order $\leq n$ at p_{∞} has dimension

$$\begin{cases} 1 + \lfloor n/2 \rfloor & n \le 2g \\ n - g + 1 & n \ge 2g \end{cases}.$$

(c) Let $\mathcal{O}(X_0)$, $\mathcal{O}(X_\infty)$ and $\mathcal{O}(X_0 \cap X_\infty)$ be the rings of regular functions on the corresponding sets. Show that the quotient

$$\mathcal{O}^1(X_0 \cap X_\infty) / (\mathcal{O}(X_0) + \mathcal{O}(X_\infty))$$

is a g-dimensional vector space.

(d) Let $\Omega^1(X_0)$, $\Omega^1(X_\infty)$ and $\Omega^1(X_0 \cap X_\infty)$ be the modules of 1-forms on the corresponding sets. Show that the quotient

$$\Omega^1(X_0 \cap X_\infty) / \left(\Omega^1(X_0) + \Omega^1(X_\infty) \right)$$

is a 1-dimensional vector space.

Please turn over

4. In this problem, we will show that a normal curve is smooth. One can adapt this to prove the more general fact that the singular locus of a normal variety is codimension ≥ 2 .

Let X be a one dimensional, irreducible affine variety and let p be a point of X. Let A be the coordinate ring of X. We will show that, if dim $T_p^*X > 1$, then A is not integrally closed in $\operatorname{Frac}(A)$. Let x_1 and x_2 be two functions vanishing at p and representing linearly independent classes in T_p^*X . Shrinking to a smaller neighborhood of X, we may (and do) assume that p is the only common zero of x_1 and x_2 . So $(x_1 : x_2)$ is a regular map $X \setminus \{p\} \longrightarrow \mathbb{P}^1$. Let Y be the closure in $X \times \mathbb{P}^1$ of the graph of this map.

- (a) Let $\begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \operatorname{GL}_2(k)$. Show that $\frac{ax_1+bx_2}{cx_2+dx_2}$ is not regular at p.
- (b) Show that there is a point of $\{p\} \times \mathbb{P}^1$ not in Y. After replacing $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ by $\begin{bmatrix} ax_1+bx_2 \\ cx_1+dx_2 \end{bmatrix}$ for some $\begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \operatorname{GL}_2(k)$, we may (and do) assume that the point (p, (1:0)) is not in Y. Having made this reduction, we put $\theta = \frac{x_1}{x_2}$. We know that θ is not regular at p.
- (c) Show that we can pass to a smaller neighborhood of p, so that $(X \times (1:0)) \cap Y = \emptyset$. From now on, we assume we have passed to such a smaller neighborhood. We now show that, having made all these reductions, θ is integral over A, so A is not integrally closed in Frac(A). Let I be the homogenous ideal of Y in $A[t_1, t_2]$ and let $B = A[t_1, t_2]/I$.
- (d) Show that there is an integer M such that t_1^M is divisible by t_2 in the ring B.
- (e) Show that there is a relation $t_1^M = \sum_{j=0}^{M-1} a_j t_1^j t_2^{M-j}$ in B, with $a_j \in A$, and deduce that $\theta^M = \sum_{j=0}^{M-1} a_j \theta^j$ in $\operatorname{Frac}(A)$.