Problem Set 2 – due September 21

See the course website for policy on collaboration.

Notation Throughout this problem set, k denotes an algebraically closed field.

- 1. Let A be an $n \times n$ matrix with entries in k. Let R be the commutative ring k[A]. What is the relationship between the eigenvalues of A (also called the **spectrum** of A) and MaxSpec R?
- 2. Prove the Zariski topology on k^2 is **not** the product topology of the Zariski topology on k with itself.
- 3. Let R be a finitely generated k-algebra. Choose generators x_1, x_2, \ldots, x_n and write $R = k[x_1, \ldots, x_n]/I$. So we have a natural bijection MaxSpec $(R) \leftrightarrow Z(I)$. Show that $Y \subseteq X$ is closed in the Zariski topology if and only if there is an ideal $J \subseteq R$ such that Y corresponds to the set of maximal ideals containing J.
- 4. Describe the images of the following maps. Are they open? Closed?
 - (a) Map k^2 to k^2 by $(x, y) \mapsto (x, xy)$.
 - (b) Let $SL_2 = \{ \begin{pmatrix} w & x \\ y & z \end{pmatrix} : wz xy = 1 \}$. Map SL_2 to k^2 by $\begin{pmatrix} w & x \\ y & z \end{pmatrix} \mapsto (w, x)$.

The remainder of this problem set reminds us of the basic properties of Noetherian rings: Let R be a commutative ring. We define the following properties of R, which we will then show are all equivalent. If R has any (and hence all) of these properties, we define R to be **noetherian**.

- 1(a) For any chain $I_1 \subseteq I_2 \subseteq I_3 \subseteq \cdots$ of ideals in R, we have $I_r = I_{r+1}$ for all sufficiently large r.
- 1(b) Every ideal I of R is finitely generated.
- 2(a) For any $n \ge 0$ and any chain $M_1 \subseteq M_2 \subseteq M_3 \subseteq \cdots$ of submodules of \mathbb{R}^n , we have $M_r = M_{r+1}$ for all sufficiently large r.
- 2(b) For any $n \ge 0$, every submodule M of \mathbb{R}^n is finitely generated.
- 3(a) For any finitely generated *R*-module *S* and any chain $M_1 \subseteq M_2 \subseteq M_3 \subseteq \cdots$ of submodules of *S*, we have $M_r = M_{r+1}$ for all sufficiently large *r*.
- 3(b) For any finitely generated *R*-module *S*, every submodule *M* of *S* is finitely generated.
- 5. For your favorite choice of $\# \in \{1, 2, 3\}$, show that #(a) and #(b) are equivalent.
- 6. For your favorite choice of $* \in \{a, b\}$, show that:
 - (a) $1(*) \implies 2(*)$.
 - (b) $2(*) \implies 3(*)$.
 - (c) $3(*) \implies 1(*)$.

We remark that 1(b) is obvious for fields, but 2(b) is the first significant theorem in a linear algebra course, so you should expect to have to do some work.

- 7. Show that a quotient of a noetherian ring is noetherian. Hint: The 3(*) properties are your friend.
- 8. We will now prove the **Hilbert basis theorem**: If A is noetherian, then A[t] is noetherian. Hence, by induction on n, $k[t_1, t_2, \ldots, t_n]$ is noetherian. Applying the previous problem, this shows any finitely generated k-algebra is noetherian.

Let I be an ideal of A[t]. We will be proving Property 1(b), that I is finitely generated. Define I_d to be the set of $g \in A$ such that there is an element of I of the form $gt^d + f_{d-1}t^{d-1} + \cdots + f_1t + f_0$.

- (a) Show that I_d is an ideal of A.
- (b) Show that $I_0 \subseteq I_1 \subseteq I_2 \subseteq \cdots$. Using property 1(a) of A, there there is some ideal I_{∞} of A so that $I_r = I_{r+1} = \cdots = I_{\infty}$. Using property 1(b) of A, take a finite list of generators g_1, g_2, \ldots, g_k of I_{∞} . For each g_i , choose $f_i \in I$ of the form $g_i t^r$ + lower order terms.
- (c) Show that $I \cap A \cdot \{1, t, t^2, \dots, t^{r-1}\}$ is finitely generated as an A-module. Let h_1, h_2, \dots, h_ℓ be a list of generators for $I \cap A \cdot \{1, t, t^2, \dots, t^{r-1}\}$.
- (d) Show that $f_1, f_2, \ldots, f_k, h_1, h_2, \ldots, h_\ell$ generate I as an A[t] module.