PROBLEM SET 3 - DUE SEPTEMBER 26

See the course website for policy on collaboration.

Notation The symbol k denotes an algebraically closed field. Let X be a Zariski closed subset of k^m , let $\Omega \subseteq X$ be Zariski open and let f be a function $\Omega \to k$. For $x \in \Omega$ we say that f is **regular at** x if there is a Zariski open neighborhood U of x and regular functions g and h on X such that $h|_U \neq 0$ and $f|_U = (g/h)|_U$. We say that f is regular on Ω if it is regular at every point of Ω .

- 1. (This is the converse of a result proved in class.) Let R be a commutative ring and let I be an ideal of R[y]. Suppose that R[y]/I is finitely generated as an R-module. Show that y obeys a monic polynomial $y^N + g_{N-1}y^{N-1} + \cdots + g_0$ in the quotient R[y]/I.
- 2. Let X be an affine variety. Show that the Zariski topology on X is compact.
- 3. Let k have characteristic not equal to 2. Let

$$O_2 = \left\{ \begin{pmatrix} w & x \\ y & z \end{pmatrix} : \begin{pmatrix} w & x \\ y & z \end{pmatrix} \begin{pmatrix} w & y \\ x & z \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \right\}$$

- (a) Show that O_2 is disconnected, explicitly writing it disjoint union of two closed components.
- (b) Find an idempotent in \mathcal{O}_{O_2} other than 0 and 1.
- 4. Let X be $\{(w, x, y, z): wy = x^2, xz = y^2\}$.
 - (a) Show that X is not irreducible, explicitly writing $X = X_1 \cup X_2$ for two Zariski closed sets X_1 and X_2 with $X_1, X_2 \neq X$.
 - (b) Show that the X_1 and X_2 you found are irreducible.
- 5. Decompose X into irreducible components where

$$X = \left\{ \begin{pmatrix} u & v & w \\ x & y & z \end{pmatrix} : \det \begin{pmatrix} u & v \\ x & y \end{pmatrix} = \begin{pmatrix} v & w \\ y & z \end{pmatrix} = 0 \right\}$$

- 6. Let X be an affine variety. Show that the units in the ring \mathcal{O}_X are precisely the regular functions $f: X \to k$ which are nowhere 0.
- 7. Let $X \subseteq k^m$ be Zariski closed, and let $f : X \to k^n$ be a regular map. Define the graph of f, written $\Gamma(f)$, to be the set $\{(x, y) \in X \times k^n : f(x) = y\}$.
 - (a) Show that $\Gamma(f)$ is Zariski closed in $k^m \times k^n$.
 - (b) Show that $\Gamma(f) \cong X$. That is to say, show that there are regular maps $\Gamma(f) \to X$ and $X \to \Gamma(f)$ which are mutually inverse.
- 8. Let $X = \mathbb{A}^2$, with coordinate functions x and y. Let $\Omega = X \setminus \{(0,0)\}$. Show that any regular function on Ω extends to a regular function on X.
- 9. Let $X = \{(w, x, y, z) : wy = wz = xy = xz = 0\}$. Let $\Omega = X \setminus \{(0, 0, 0, 0)\}$. This problem gives an example of a regular function on Ω which cannot be represented as g/h for a single polynomial h which is nonzero everywhere on Ω .
 - (a) Decompose X into irreducible components. You should find two, call them X_0 and X_1 .
 - (b) Show that $X_0 \cap \Omega$ and $X_1 \cap \Omega$ are disjoint.
 - (c) Let $f: \Omega \to k$ be 0 on X_0 and 1 on X_1 . Show that f is regular on Ω .
 - (d) Show that f cannot be written in the form g/h with g and $h \in \mathcal{O}_X$ and h nowhere vanishing on Ω .