PROBLEM SET 4 – DUE OCTOBER 3

See the course website for policy on collaboration.

- 1. Two conics should intersect at 4 points. So, what are the 4 points of \mathbb{P}^2 where the circles $(x-3)^2 + y^2 = 25$ and $(x+3)^2 + y^2 = 25$ meet?
- 2. Let X and Y be topological spaces and $\phi: X \to Y$ a surjective map. If X is irreducible, show that Y is also irreducible.
- 3. Let X be a topological space. Show that X is irreducible if and only if every nonempty open subset of X is dense.
- 4. Let $X = Z(y(x^2 y)) \subset \mathbb{A}^2$. Define $f: X \to k$ by

$$f(x,y) = \begin{cases} x & y = x^2 \\ 0 & y = 0 \end{cases}$$

Show that f is not a regular function.

- 5. Let X and Y be Zariski closed in \mathbb{A}^m and \mathbb{A}^n respectively. We'll write π_X and π_Y for the projections $X \times Y \to X$ and $X \times Y \to Y$ respectively.
 - (a) Show that $X \times Y$ is Zariski closed in $\mathbb{A}^m \times \mathbb{A}^n$.
 - (b) Show that $\mathcal{O}_{X \times Y}$ is generated by the pullbacks of \mathcal{O}_X and \mathcal{O}_Y along π_X and π_Y respectively.
- 6. Prove that the only regular functions $\mathbb{P}^1 \to k$ are the constants.
- 7. Map \mathbb{P}^2 to \mathbb{P}^5 by $\phi: (p:q:r) \mapsto (p^2:pq:pr:q^2:qr:r^2)$. We write (u:v:w:x:y:z) for the coordinates on \mathbb{P}^5 .
 - (a) Show that ϕ is injective.
 - (b) Show that the image of ϕ is closed, and give explicit homogenous equations for the image.
 - (c) Show that the inverse map $\phi(\mathbb{P}^2) \to \mathbb{P}^2$ is regular.