Problem Set 5 – due Wednesday, October 10

See the course website for policy on collaboration.

- 1. Let X be a Zariski closed subset of \mathbb{A}^n . Let f be a regular function on X. The open set $\{f \neq 0\}$ is denoted D(f); an open set of this form is called a distinguished open. Let $Y \subset \mathbb{A}^{n+1} = \{(x,t) : x \in X, ft = 1\}.$
 - (a) Show that Y is isomorphic to D(f) by giving regular maps in each direction.
 - (b) Conclude that every regular function on D(f) is of the form $\frac{g}{f^N}$ for some regular function g on X and some nonnegative integer N.
 - (c) Check that basic open sets are a basis for the Zariski topology on X.
- 2. Let B = MaxSpec A and let X be Zariski closed in $B \times \mathbb{P}^n$. Show that X = Z(I) for some homogenous ideal $I \subset A[x_0, x_1, \ldots, x_n]$.
- 3. Let A be a commutative ring and I and J ideals. Then [I:J] is defined by

$$[I:J] := \{ f \in A : fj \in I \text{ for all } j \in J \}.$$

The ideal $[I: J^{\infty}]$, called the *saturation of* I with respect to J is defined to be

$$[I:J^{\infty}] = \bigcup_{n=0}^{\infty} [I:J^n]$$

Let \overline{S} denote the Zariski closure of S.

- (a) Let I and $J \subset k[x_1, \ldots, x_n]$ be radical ideals, with I = I(X) and J = I(Y). Show that [I:J] is radical, $[I:J] = [I:J^{\infty}]$ and $[I:J] = I(\overline{X \setminus (X \cap Y)})$.
- (b) Let I and $J \subset k[x_1, \ldots, x_n]$ be ideals, not necessarily radical, with X = Z(I) and Y = Z(J). Show that $Z([I : J^{\infty}]) = \overline{X \setminus (X \cap Y)}$.
- 4. Let $U \subset \mathbb{P}^2$ be the complement of the conic $p^2 + q^2 + r^2 = 0$. In this problem, we will show that U is isomorphic to an affine variety. A similar proof shows $\mathbb{P}^N \setminus \{F = 0\}$ is affine for any homogenous polynomial F.

Embed \mathbb{P}^2 into \mathbb{P}^5 by $\phi: (p:q:r) \mapsto (p^2:pq:pr:q^2:qr:r^2)$. You found that $\phi(\mathbb{P}^2)$ is closed in \mathbb{P}^5 , with equations $ux = v^2$, $uy = w^2$, $xz = y^2$, uy = vw, vz = wy and wx = vy.

- (a) Show that $\phi(U)$ lies in a linear chart of \mathbb{P}^5 , and is closed in that linear chart.
- (b) Give explicit generators and relations for the ring of regular functions on U.
- 5. In this problem, we will work with \mathbb{P}^9 and label the homogeneous coordinates as a_{ijk} for $0 \leq i, j, k, i + j + k = 3$. We think of (a_{ijk}) as encoding the cubic curve $\sum a_{ijk} x^i y^j z^k$ in \mathbb{P}^2 . Show that the set of cubics which factor as (linear)(quadratic) is Zariski closed in \mathbb{P}^9 .
- 6. I used to believe that, if $\phi : \mathbb{A}^m \to \mathbb{A}^n$ was given by homogenous polynomials all of the same degree, then $\phi(\mathbb{A}^m)$ is Zariski closed. This is false! Give a counterexample.
- 7. In the proof of his second statement of Noether normalization (Theorem I.5.4.10), Shavarevich implicitly assumes the following statement. Prove it.

Let $X \subsetneq \mathbb{A}^n$ be Zariski closed in \mathbb{A}^n . Let \overline{X} be the closure of X in \mathbb{P}^n . Then there is some point of $\mathbb{P}^n \setminus \mathbb{A}^n$ which is not in \overline{X} .