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September 5: Preview of algebraic geometry. Algebraic geometry relates algebraic
properties of polynomial equations to geometric properties of their solution set.

The first theorem of algebraic geometry is the fundamental theorem of algebra:

Theorem (Fundamental Theorem of Algebra, misstated). Let f(z) = fdz
d + fd−1z

d−1 +
· · ·+ f0. Then there are d points in {z : f(z) = 0}.

We have related an algebraic property of the polynomial f – its degree – to a geometric
property – the cardinality – of its zero set. If “cardinality” doesn’t sound geometric to you,
you can say that I computed |π0| or dimH0.

Of course, there are some caveats to the above:

• We need to say what field we are taking solutions in – it should be algebraically
closed.
• We need to require that fd 6= 0.
• We need to count with multiplicity.

Each of these caveats represents a more general issue that we’ll see throughout the subject
of algebraic geometry (namely, the need to work in algebraically closed fields, the need to
take projective completions, and the need to keep track of nilpotents). Because of caveats
like this, algebraic geometry has a reputation as a technical subject. However, I hope to
convince you that algebraic geometry is fundamentally not technical – the essence of this
result is that the number of solutions equals the degree.

Algebraic geometry is a field that has reinvented itself several times. What version of
algebraic geometry are we studying?

Before the twentieth century, algebraic geometry meant studying the solutions of polyno-
mial equations, in Cn or Rn, using all the tools of analysis, differential geometry and algebraic
topology. This is still an important, active, subject, but it is not what we are doing.

In the twentieth century, the major project of algebraic geometry was to redevelop the
tools of analysis, differential geometry and algebraic topology in a purely algebraic way, so
they can be used in any algebraically closed field. Major names here are Zariski and Weil in
the first half of the twentieth century, followed by Grothendieck and Serre in the sixties. Our
textbook by Shafarevich, takes this as its goal, but from a perspective early in the project.
We will take a similar perspective this term, but will try to prepare you next term to read
Hartshorne’s book, which is closer to the Grothendieck perspective.

This project is still ongoing – work on stacks, derived algebraic geometry or A1-homotopy
theory are all still seeking new foundations. However, I want to emphasize that there are
many good problems in algebraic geometry which can be understood at the basic level of
Shafarevich! You don’t need to spend years on foundations to read and do interesting
research!

So, why should we try to rebuild geometric tools in a purely algebraic way? I’ll give three
answers: The one which originally drew me to algebraic geometry, the one which historically
captured the interest of the mathematical community, and what I think is the best answer
now.

What originally drew me to algebraic geometry: There are no space filling curves. There
are no functions which don’t equal their Taylor series. Every function is given by a polynomial
which you can write down. If you compare the difficulty of writing down, say a 3-manifold,
to that of writing down an algebraic variety, you’ll see that an algebraic variety is just a
finite list of polynomials. Compared to analysis and differential geometry, I loved (and still



4 MATH 631 NOTES, FALL 2018

love!) the idea of a subject where the fundamental objects are well behaved and can be
written down using a finite amount of data.

What drew the mathematical community to this project was work of Weil. Here is an
example of the sort of thing Weil was studying: Consider the equation y2 = x3 − x− 1. In
C2, the solutions of these equations form a genus one surface with one puncture:

Weil was considering this equation (and many others) not over C, but over the finite fields
Fpk . It is a good idea to add in one more solution, corresponding to the missing puncture.
With this correction, the number of solutions over F3k is

1, 7, 28, 91, 271, 784, 2269, 6643, 19684, 58807 · · ·
and turns out to be given by

3k −
(

3 +
√
−3

2

)k
−
(

3−
√
−3

2

)k
+ 1.

More generally, for any prime p, there are complex numbers αp and αp, such that αpαp = p,
such that the number of solutions over Fpk is

pk − αkp − αpk + 1.

Weil realized that this formula can be thought of as

det(Ak − Id)

where A is a 2× 2 matrix with eigenvalues αp and αp. (In the p = 3 example, we could take
A = [ 2 1

−1 1 ].)
Moreover, Weil gave an insightful way to think of this. The map Frob : (x, y) 7→ (xp, yp)

is a permutation of the Fp solutions of this equation, and the Fpk solutions are the fixed

points of Frobk. Now, let’s go back to the complex case. The complex solutions (with the
puncture filled in) look topologically like R2/Z2. An endomorphism of R2/Z2 looks like
multiplication by a 2 × 2 integer matrix. And the number of fixed points of multiplication
by Ak is det(Ak − Id)!

Thus, Weil’s computations suggest that the curve y2 = x3−x−1 in some sense is of genus
1, and the map (x, y) 7→ (xp, yp) in some senselooks like multiplication by a 2× 2 matrix of
determinant p. This suggests a need to develop the language of algebraic topology to work
over fields like Fp.

The best reason to redevelop geometry in purely algebraic language, in my opinion, is to
gain a new understanding of geometry. Just as learning French can teach you how English
works, I found that learning algebraic geometry gives a new, clarifying perspective on the
differential geometry and topology I supposedly already knew.

September 7: Basic definitions, slicing and projecting. Let k be an algebraically
closed field. For a subset S of k[x1, . . . , xn], we define

Z(S) = {(a1, . . . , an) ∈ kn : f(a) = 0 ∀f ∈ S}.



MATH 631 NOTES, FALL 2018 5

For a subset X of kn, we define

I(X) = {(a1, . . . , an) ∈ kn : f(a) = 0 ∀a ∈ X}.
We verified that

Proposition. The maps Z and I are inclusion reversing correspondences between subsets
of k[x1, . . . , xn] and subsets of kn.

Proposition. We have Z(I(X)) ⊇ X and I(Z(S)) ⊇ S.

Proposition. We have Z ◦ I ◦ Z = Z and I ◦ Z ◦ I = I.

Thus, Z ◦ I and I ◦ Z are inverses between the image of I and the image of Z.
A set X ⊆ kn is called Zariski closed if X = Z(S) for some S. In other words, if

X = Z(I(X)). In general, for X ⊆ kn, we put X = Z(I(X)) and call X the Zariski
closure of X. You will check on the problem set that the Zariski closed sets are the closed
sets of a topology and X is the closure of X.

We could make a definition that a subset S of k[x1, . . . , xn] is “geometrically closed” if
S = I(Z(S)). However, in a week, we will in fact prove the Nullstellansatz, which says that
S = I(Z(S)) if and only if S is a radical ideal.

In the meantime, we discussed two important ways to reduce the number of variables.

Proposition (Slicing). Let X ⊂ kn+1 be Zariski closed, with X = Z(S). Then X ′ :=
X ∩ {xn+1 = 0} is Zariski closed, with X ′ = Z(S ∪ {xn+1}).

Let π : kn+1 → kn be the projection onto the first n coordinates. If X ⊂ kn+1 is Zariski
closed, then π(X) need not be Zariski closed. Consider X = {x1x2 = 1}. Then π(X) =
{x1 6= 0} which is not Zariski closed.

Proposition (Projection). Let X ⊂ kn+1 be Zariski closed, with I = I(X). Then I(π(X))

is I ∩ k[x1, . . . , xn], so Z(I ∩ k[x1, . . . , xn]) = π(X).

A confusing point that was not explained well in class: This proposition started with a
variety X and set I = I(X). If we start with I an ideal I and put X = Z(I), it is not clear

that Z(I ∩ k[x1, . . . , xn]) = π(X). To see this, note that the situation is different when k is
not algebraically closed. Indeed, consider the ideal I = 〈x2 + y2 + 1〉 in R[x, y]. The zero set

of I, in R2, is ∅, so π(∅) = ∅ = ∅. But I ∩ R[x] = (0), and Z((0)) = R.
For algebraically closed fields, this issue does not happen, but we will only be able to

conclude this after we know the Nullstellansatz.
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September 12: Nakayama’s lemma; finite maps are closed. Before we start our main
material, a piece of vocabulary which has occurred on the problem sets but not yet in class:
For k an algebraically closed field and A a k-algebra, we made the preliminary definition
MaxSpec(A) = Homk−alg(A, k). Given a map φ : A → B of k-algebras, the induced map
on MaxSpec’s, φ∗ : MaxSpec(B) → MaxSpec(A), sends β : B → A to β ◦ φ : A → k. The
problem set gives you a good opportunity to get used to how this constructions tuns algebra
into geometry.

Let X ⊂ An+1 be Zariski closed and let π be the projection onto the first n coordinates.
We have seen that π(X) need not be Zariski closed. We would like conditions under which
π(X) is closed. Let’s expand this algebraically and see what it means. Let I = I(X). It
will be convenient to put R = k[x1, . . . , xn], to view the coordinate ring of An+1 as R[y].

We would like some condition under which we have the implication: If a lies in π(X),
then there exists (a, y) ∈ X. Taking the contrapositive, we would like that, if X ∩ {x1 =

a1, . . . , xn = an} = ∅, then a 6∈ π(X).
Now, X ∩ {x1 = a1, . . . , xn = an} = Z(I + ma) where ma = 〈x1 − a1, . . . , xn − an〉. So

(using that k is algebraically closed) the condition that X ∩ {x1 = a1, . . . , xn = an} = ∅ is

equivalent to I +maR[y] = (1). The desired conclusion that a 6∈ π(X) translates into asking
that there is some f ∈ I ∩ R such that f(a) 6= 0. So we want that, under some hypothesis,
the condition I + maR[y] = (1) implies ∃f ∈ R ∩ I with f 6∈ ma.

This conclusion sounds nicer in terms of the ring S = R[y]/I. We want to know that, if
maS = S, then there exists some f ∈ R, with f = 0 in S, and f 6∈ ma.

The missing condition is that S is finitely generated as an R module. It turns out that the
ring structure of S is a distraction, we only need its structure as an R module. Renaming
ma to I and S to M , what we need is:

Theorem (Nakayama’s Lemma, version 1). Let R be a commutative ring, let I be an ideal
of R and let M be a finitely generated R-module. Suppose that mM = M . Then there is
some f ∈ R with f ≡ 1 mod I and fM = 0.

Proof. Let g1, g2, . . . , gN generate M as an R-module. Since IM = M , for each j, there are
hij ∈ I such that

gj =
∑
i

hijgi.

Organizing the hij into a matrix H and the gj into a vector ~g, we have

(IdN −H)~g = 0.

Left multiplying by the adjugate of IdN −H, we deduce that det(IdN −H)~g = ~0. Let f be
the element det(IdN − H) of R. Then f~g = 0, meaning that fgj = 0 for each j, and thus
fM = 0. But H ≡ 0 mod I, so f = det(IdN −H) ≡ det IdN = 1 mod I as desired. �

To summarize the geometric conclusion:

Theorem. Let X ⊂ k[x1, . . . , xn, y] be Zariski closed with ideal I, and suppose that k[x, y]/I
is finitely generated as a k[x]-module. Then π(X) = Z(I ∩ k[x]). In particular, π(X) is
Zariski closed.

We note that, in our example of a non-Zariski closed projection, the ring k[x, y]/(xy−1) ∼=
k[x, x−1] is not finitely generated as a k[x]-module.

So, when is R[y]/I a finitely generated R-module?
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Lemma. The quotient ring R[y]/I is finitely generated as an R-module if and only if I
contains a polynomial of the form yd + rd−1y

d−1 + · · ·+ r1y + r0.

Proof. In one direction, if yd + rd−1y
d−1 + · · ·+ r1y+ r0 ∈ I, then R[y]/I is spanned by yd−1,

yd−2, . . . , y, 1. The reverse direction is left to homework. �

So we have the geometric conclusion:

Theorem. Let g ∈ k[x, y] be a polynomial of the form yd+gd−1(x)yd−1 + · · · g1(x)y+g0(x).
Then π : Z(g) → An is a closed map. For any ideal I containing g, we have π(X) =
Z(I ∩ k[x]).

Geometrically, the difference between a monic polynomial y2 − x3 + x, and a nonmonic
polynomial xy − 1, is that the zero locus of a monic polynomial does not have vertical
asymptotes.

y2 = x3 − x xy = 1

A remark on motivation in the classical geometry case: It is also true, over k = R or C,
that if g ∈ k[x, y] is monic in y, then π : Z(g) → kn is closed in the classical topology on
kn. Proof: If h(y) = yd + hd−1y

d−1 + · · · + h0 is a polynomial in k[y], and h(r) = 0, then
|r| ≤ 1 + max(|hj|). (Exercise!) So

Z(g) ⊆ {(x, y) : |y| ≤ 1 + max(|gd−1(x)|, . . . , |g1(x)|), |g0(x)|).
The right hand side is proper over kn, and Z(g) is closed in it, so Z(g)→ kn is proper and,
in particular, closed. The figure below shows {y2 = x3−x} as a subset of {|y| ≤ |x3−x|+1}:
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September 14: Proof of the Nullstellansatz. Today, we prove the Nullstellansatz! We
first want:

Lemma (Noether’s normalization lemma, first version). Let g(x1, . . . , xn, y) be a nonzero
polynomial with coefficients in an infinite field k. Then there exist c1, . . . , cn ∈ k such that
g(x1 + c1y, x2 + c2y, . . . , xn + cny, y) is monic as a polynomial in y.

For example, xy = 1 is not finite over the x-line, but (x+ cy)y = 1 is finite over the x-line
for c 6= 0. Geometrically, this means that we can shear Z(g) so that make sure it has no
vertical asymptotes.

xy = 1 (x+ y)y = 1

Proof. Write g(x, y) = gd(x, y) + gd−1(x, y) + · · · + g0(x, y) where gj is homogenous of
total degree j and gd 6= 0. Then g(x1 + c1y, . . . , xn + cny, y) = gd(c1, c2, . . . , cn, 1)yd +
(lower order terms in y). Since gd is a nonzero homogenous polynomial, the polynomial
gd(t1, . . . , tn, 1) is not zero. Since k is infinite, we can find some specific (c1, . . . , cn) ∈ kn

where gd(c1, c2, . . . , cn, 1) 6= 0. �

We now prove the Weak Nullstellansatz:

Theorem (Weak Nullstellansatz). Let k be an algebraically closed field and let I be an ideal
of k[x]. If Z(I) = ∅ then I = (1).

Proof. We will be showing the contrapositive: If I 6= (1), then Z(I) 6= ∅ or, in other words,
I ⊇ ma for some a ∈ kn.

Our proof is by induction on n. For the base case, n = 1, since k[x] is a PID we have
I = 〈g(x)〉 for some g and, since I 6= (1), the polynomial g has positive degree. Then g has
a root a, by the definition of being algebraically closed, and 〈g〉 ⊆ ma.

We now turn to the inductive case; assume the result is known for k[x1, . . . , xn] and let I
be an ideal of k[x1, . . . , xn, y]. If I = (0), the result is clearly true. If not, let g(x1, . . . , xn, y)
be a nonzero polynomial in I. By Noether’s normalization lemma, we may make a change
of variables such that g is monic in y and thus k[x, y]/I is finite as a k[x]-module.

Put J = I ∩ k[x1, . . . , xn]. Since I 6= (1), we also have J 6= (1) so, by induction,
there is some a ∈ Z(J) ⊆ kn. By yesterday’s result, we can lift (a1, . . . , an) to some
(a1, . . . , an, an+1) ∈ Z(I) ⊂ kn+1. �

We can now prove the Strong Nullstellansatz, using a method called Rabinowitsch’s trick:
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Theorem (Strong Nullstellansatz). Let k be an algebraically closed field and let I be an

ideal of k[x]. Suppose that h is 0 on all of Z(I). Then h ∈
√
I.

Taking h = 1 yields the Weak Nullstellansatz. We will now show that the Weak Nullstel-
lansatz implies the Strong:

Proof. We consider the zero set of I in one dimension higher. Since h is 0 on Z(I), the
polynomial 1−h(x)y is nowhere vanishing on Z(I) ⊂ An+1. So By the Weak Nullstellansatz,
we deduce that 1−h(x)y is a unit in k[x, y]/I = (k[x]/I)[y]. By the homework, this implies
that h is nilpotent in k[x]/I. �

September 17: Affine varieties, regular functions, and regular maps. In what
follows we will set up a correspondence between geometric objects and algebraic ones. We
begin by defining our spaces, and an appropriate notion of maps between them.

Definition. An affine variety X is a Zariski closed subset of Am.

Definition. Given an affine variety X ⊆ Am, a function ϕ : X → k is called regular if ϕ
is the restriction of some polynomial f in k[x1, . . . , xm] to X. A map ϕ : X → An is called
regular if each of its coordinate functions1 is regular.

Definition. Given affine varieties X ⊆ Am and Y ⊆ An, a regular map from X to Y is a
function f : X → Y such that the composition

X
f−→ Y ↪→ An

is regular, in the sense of the previous definition.

Given an affine variety X ⊆ Am, we can consider the ring of regular functions on X,
which we will denote by OX . This gives us a method by which to associate a ring to an
affine variety. Moreover, given any regular map ϕ : X → Y , we obtain the ”pullback” map
ϕ∗ : OY → OX which acts on the regular function g : Y → k by

ϕ∗ : OY → OX
ϕ∗(g : Y → k) = (g ◦ ϕ : X → k)

This construction defines a contravariant functor from the category of affine varieties to
the category of finitely generated k-algebras with no nilpotents.2

Let’s construct a (contravariant) functor in the other direction. Recall that MaxSpecA :=
Homk−alg(A, k). Since A is finite generated, we can choose generators x1, . . . , xn for A and
write A = k[x1, . . . , xn]/I. A homomorphism A→ k is determined by the images of the xi,
so by a point (a1, . . . , an) ∈ An. But such a homomorphism only exists if f(a) = 0 for all
f ∈ I. In other words, once we choose generators, MaxSpecA is in canonical bijection with
Z(I).

Suppose B and A are finitely generated k-algebras without nilpotents, and ψ : B → A
is a k-algebra homomorphism. Then this induces a map ψ∗ : MaxSpec(A) → MaxSpec(B)
given by (h : A→ k) 7→ (h ◦ ψ : B → k).

1The coordinate functions are the maps πi ◦ ϕ : X → k, where πi is the projection of X onto the line
k ∼= {(x1, . . . , xm) ∈ Am : xj = 0 for all j 6= i}.

2The former category has regular maps of affine varieties as its arrows, and the latter category has k-
algebra homomorphisms as its arrows.
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If we let AffVar denote the category of affine varieties and FGAlg denote the category
of finitely generated k-algebras with no nilpotents, we have:

Theorem. The contravariant functor AffVarop → FGAlg taking a regular map ϕ : X → Y
to its pullback ϕ∗ : OY → OY , defines an equivalence of categories.

This theorem suggests that in some sense all of the information about an algebraic variety
X is contained in its coordinate ring OX .

Moving on, we recall that we have developed a notion of nice maps between algebraic
varieties, namely regular maps. These play the role that smooth maps play in the category
of smooth manifolds. When working with a smooth manifold M , one also has a notion of
when a map f : M → R is smooth at some point x ∈M . We will soon state the appropriate
notion of regularity of a map f : X → k at some point x ∈ X. In fact, we define such a
notion for a function on any subset of An:

Definition. Let X be any subset of An. A function f : X → k is regular at x ∈ X if there
exist g, h ∈ k[x1, . . . , xn], with h(x)6= 0, such that

f =
g

h

on a Zariski open neighborhood of x.

Continuing our analogy with manifold theory, we recall that a map f : M → R is smooth
if and only if it is smooth at every point x ∈ M . The analogous fact for regular maps is
stated below, and we will cover the proof in class soon:

September 19: Regularity, Connected Components and Idempotents. We start
with a proof of the theorem mentioned last time.

Theorem. Let X be a Zariski closed subset of An. A function f : X → k is regular if and
only if f is regular at every x ∈ X.

Proof. Suppose that f : X → k is regular. Then, we can choose g = f , and h = 1 so that we
have f = g

h
on all of X, which is a neighborhood of every point x ∈ X. Thus, f is regular

at every point.
Now suppose that f : X → k is regular at every point x ∈ X. We can find an open

neighborhood Vx, and rational functions gx, hx ∈ k[x1, . . . , xn], with hx(y) 6= 0, ∀y ∈ Vx,

and f(y) = gx(y)
hx(y)

, or hx(y)f(y) = gx(y), ∀y ∈ Vx.

Note that Vx ⊂ X is open in X implies that X \Vx is closed in X (which is closed in An),
and so X \ Vx is a closed subset of An and is thus an affine variety. Now, since X \ Vx is
closed and x is not in X \ Vx, we have some polynomial p ∈ I(X \ Vx) such that p(x) 6= 0.
Now we can take V ′x = Vx ∩ {y ∈ X|p(y) 6= 0}, g′x = p ∗ gx, and h′x = p ∗ hx so that we have
h′x(y)f(y) = g′x(y), ∀y ∈ X.

Let J = ({h′x|x ∈ X}), the ideal generated by the h′xs. Note that for each x ∈ X, we have
h′(x) 6= 0, so, by invoking the Nullstellansatz, the ideal I(X) + J = (1). Thus we can write

1 = q(y) +
∑

ai(y) ∗ h′i(y)

for y ∈ An, where q ∈ I(X), ai ∈ k[x1, . . . , xn], and h′i ∈ J . Now for y ∈ X, we have
1 =

∑
ai(y) ∗ h′i(y), and multiplying by f on both sides we get f(y) =

∑
ai(y) ∗ g′i(y), for

y ∈ An, so f is a polynomial restricted to X. �
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It is important to note that the requirement that X was Zariski closed (as apposed to
being an open subset of a zariski closed set) is necessary. For example, the function f :
A1 \ {0} → A1 \ {0} defined by f(y) = 1/y is regular at every point y 6= 0, but it is not a
polynomial.

It is also important to note that not every regular function on an open subset of a zariski
closed set is given by a quotient of polynomials. For example, let X = Z(x1x2−x3x4) ⊂ An,
and U = X \Z({x2, x3}, and define f(x1, x2, x3, x4) = x1

x3
if x3 6= 0, and f(x1, x2, x3, x4) = x2

x4
if x4 6= 0; there is no single expression g

h
for this f with h nonzero on all of U .

We now turn our attention to the notion of connectedness of affine varieties. Recall that
a topological space X is said to be disconnected if we can find X1, X2 ⊂ X such that
X1 ∪X2 = X, X1 ∩X2 = ∅, and X1, X2 6= ∅. A space is connected if it is not disconnected.3

Assuming that an affine variety X ⊂ An is disconnected, we can find find X1, X2 ⊂ X as
above, and define f(x) = 0, if x ∈ X1, and f(x) = 1, if x ∈ X2. Note that this function is
regular at every x ∈ X. By our result above, it must be given by a polynomial in OX . Also
note that our f is idempotent, meaning f 2 = f .

Now suppose we are given an affine variety X, and a idempotent element, f , of OX , with
f 6= 0, 1 (such an idempotent is called nontrivial). Then we can define X1 = f−1({0}), and
X2 = f−1({1}), and check that these have the properties X1 ∪X2 = X, X1 ∩X2 = ∅, and
X1, X2 6= ∅, using the fact that we must have either f(y) = 0 or f(y) = 1. Thus we have
proved

Theorem. An affine variety X is connected ⇐⇒ its coordinate ring OX contains no
nontrivial idempotent elements.

In fact, we have proved slightly more: we have given a bijection between the (ordered)
pairs of subspaces that disconnect X and nontrivial idempotent of Ox.

Now, a useful lemma from algebra says that

Lemma. A ring contains nontrivial idempotents ⇐⇒ it is the direct sum of two nontrivial
rings.

Combining this with our result above, we get that

Theorem. An affine variety X is connected ⇐⇒ its coordinate ring is not the direct sum
of two nontrivial rings.

September 21: Irreducible Components. We state Hilbert’s Basis theorem, which we
proved in the 2nd problem set:

Theorem (Hilbert’s Basis Theorem). Finitely generated k-algebras are noetherian rings.

Theorem (Hilbert’s Basis theorem, Restatement 1). Every ideal in the polynomial ring
k[x1, . . . xn] is finitely generated.4

One implication of the above restatement is that the zero set of any ideal can be realized
as the zero set of finitely many polynomials.

3In Professor Speyer’s opinion, the empty set is neither connected nor disconnected, just as 1 is neither
prime nor composite. But not everyone will agree on this point.

4Even though the initial proofs of the theorem weren’t constructive, now we can explicitly construct
generators of a given ideal in the polynomial ring. See Gröbner Basis.
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Theorem (Hilbert’s Basis theorem, Restatement 2). @ an infinite chain I1 ( I2 ( . . . (
Im ( . . . of ideals in k[x1, . . . , xn]

Using the algebro-geometric dictionary, we obtain:

Corollary. @ an infinite chain X1 ) X2 ) . . . ) Xm ) . . . of Zariski closed subsets in An.

The above corollary illustrates the fact that the Zariski topology behaves differently from
the classical topology. Instead of working with connected components, we will develop a new
way of decomposing subsets of An which takes this into account.

Definition. A topological space X is reducible if X = X1∪X2 where X1 and X2 are proper
closed subsets of X.

Definition. A topological space is irreducible if it is nonempty and not reducible.

In the previous class, we saw that X is connected if and only if its ring of regular functions
is not a direct sum. We have a similar algebraic description for when X is irreducible.

Lemma. Let X be a Zariski closed subset of An and let A be the ring of regular functions
on X. Then, X is reducible if and only if A is an integral domain.

Proof. Let f1, f2 be nonzero elements in A such that f1f2 = 0. Let Xj = Z(fj). Xj is
Zariski closed by the definition of the Zariski topology. Furthermore, Xj is proper since fj
is a nonzero element, and hence doesn’t vanish on all of X. Furthermore, since f1f2 = 0,
X = X1 ∪X2, which means that X is reducible.

Now, suppose X is reducible. We obtain a decomposition of X = X1 ∪X2, where X1 and
X2 are proper closed subsets. Now, let f1 ∈ I(X1) and f2 ∈ I(X2) be nonzero elements.
Then f1f2 vanishes on X as X is the union of X1 and X2. Hence, A is not an integral
domain. �

The above lemma should reinforce the idea that irreducible components are nicer to work
with than connected components - coordinate rings of connected components needn’t even
be integral domains!

Now, we show that any variety can be decomposed into irreducible subsets.

Theorem. Let X ⊆ An be a Zariski closed. There are irreducible varieties X1, X2, . . . XN

such that X =
⋃N
i=1Xi.

Here is an example:

= ∪

Proof. Recursively build a tree with vertices labeled by varieties. We label the root with X.
If a vertex v is labeled by Y and Y is reducible with Y = Y1∪Y2, then we place two children
below v, labeled by Y1 and Y2. If v is labeled by an irreducible variety, then make it a leaf.
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If the tree is finite, then X is the union of the irreducible labels of the leaves, as desired.
If the tree is infinite, then it has an infinite path. This corresponds to a chain of varieties

X ) X1 ) X2 ) · · · , a contradiction. �

The result about decomposing topological spaces into connected components also has a
uniqueness clause; can we expect something similar for the above decomposition?

On the face of it, no.

= ∪ ∪

However, notice that the problem arised when we threw in irreducible subvarieties which
are contained in bigger irreducible subsets of X. We can prevent this by defining:

Definition. Let X be a Zariski closed subset of An. Y ⊆ X is an irreducible component
of X if

• Y is irreducible,
• Y is closed in X, and
• @ Y ′ irreducible and closed in X such that Y ( Y

′
.

Looking back at the above example, the single point was not an irreducible component of
Z(xy).

Theorem (Irreducible Decomposition). Let X be Zariski-closed in An. Then,

(1) If X =
⋃N
i=1 Xi, with Xi irreducible, and Z ⊆ X is irreducible, then Z is contained

in one of the Xi.
(2) If X =

⋃N
i=1Xi, with Xi irreducible, then each irreducible component is equal to one

of the Xi.
(3) X has finitely many irreducible components.
(4) X is the union of its irreducible components.

Since irreducible components of X are the maximal irreducible closed subvarieties of X,
they correspond to minimal primes in the coordinate ring of X.

Proof. To prove (1), note that Z =
⋃
i(Z ∩Xi). Since Z is irreducible and Z ∩Xi is closed

in Z, this means that one of the Z ∩Xi equals Z, so, for that i, we have Z ⊆ Xi.
For (2), let Y be an irreducible component of X. By (1), we know that Y is contained in

some Xi. But, by the definition of being an irreducible component, this implies that Y = Xi.
For (3), we have just shown that all the irreducible components occur in the finite list X1,

X2, . . . , XN , so there are finitely many.
We finally come to (4). Choose a decomposition X =

⋃N
i=1Xi into irreducible subvarieties

where N is minimal. Suppose, for the sake of contradiction that one of the Xi is not an
irreducible component; without loss of generality let it be XN . So XN ( X ′ for some
irreducible X ′. Using (1), we have X ′ ⊆ Xj for some j, and this j must not be N . So

XN ( X ′ ⊆ Xj and thus
⋃N
i=1Xi =

⋃N−1
i=1 Xi, contradicting minimality.
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�

September 24: Projective spaces. We’ll now start to see projective varieties in projective
spaces. To start with, we settle some notations: Let k denote a algebraic closed field, V
denote a finite dimensional k-vector space, and P(V ) = (V − {0})/k∗ the projective space.
Write Pn = P(k⊕(n+1)). We’ll use (z1, · · · , zn+1) to denote the coordinates on kn+1, and
[z1 : z2 : · · · : zn+1] to denote homogeneous coordinates on Pn.

The first observation is that inside Pn, there sits a copy of An, via the inclusion map

i : An → Pn, (z1, · · · , zn) 7→ [z1 : z2 : · · · : zn : 1].

We then have a decomposition Pn = An ∪ Pn−1 = {zn+1 6= 0} ∪ {zn+1 = 0}. Similarly, if
V = H ⊕ k, where H is a hyperplane, we have P(V ) = H ∪ P(H) = {[h : 1]} ∪ {[h : 0]}.

The reason why we’re considering the projective space is to try to draw an analogy to
the fact in manifold theory that every compact manifold can be embedded in some Rn.
However, there are no positive dimensional subvarieties of An which deserve to be called
compact. (Literally speaking, An is compact in the Zariski topology, but we will see soon
that this is misleading.) Pn does deserve to be called compact, as we will soon see.

In this course we will see:

• Affine varieties: Closed subsets of An.
• Quasi-affine varieties: Open subsets of affine varieties.
• Projective varieties: Closed subsets of Pn.
• Quasi-projective varieties: Open subsets of projective varieties.

Figure 1 shows their relations.
We won’t deal with any notion of variety more abstract than a quasi-projective variety in

this term. More general abstract notions of variety could make a great final project, though!
There are three ways to talk about projective spaces:

• Work in V − {0} and do dilation invariant things.
• Work in homogeneous coordinates: If g ∈ k[x1, · · · , xn+1] is a homogeneous polyno-

mial, then Z(g) is a well-defined subset of Pn.
• Work locally in an affine chart, i.e., split V = H ⊕ k and think of H ⊆ P(V ). For

example, we can cover P2 with homogeneous coordinates [x1 : x2 : x3] using three
charts {xi 6= 0}, i = 1, 2, 3.

Example. Let’s look at a curve in different coordinate charts. Consider the curve x2
1 +x2

2 =
x2

3 in P2. On chart {x3 6= 0}, the equation becomes (x1
x3

)2 + (x2
x3

)2 = 1, and this is a circle.

On chart {x1 6= 0}, the equation is 1 + (x2
x1

)2 = (x3
x1

)2, which illustrates a hyperbola.
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Figure 1. Various classes of varieties

(x1
x3

)2 + (x2
x3

)2 = 1 1 + (x2
x1

)2 = (x3
x1

)2

.



16 MATH 631 NOTES, FALL 2018

Corresponding to the three ways of talking about projective spaces, we have three ways
of describing the topology on Pn:

Definition. A set X is closed in P(V ) if one of the following holds:

• π−1(X) is closed in V − {0}, or equivalently, π−1(X) ∪ {0} is closed in V , where
π : V − {0} → P(V ) is the projection map;
• X =

⋂
g∈S

Z(g), where S is a set of homogeneous polynomials in k[x1, · · · , xn+1].

• X ∩ H is closed in every affine chart H, or equivalently, X ∩ {xj 6= 0} is closed in
{xj 6= 0} ∼= An,∀j.

We also have three ways to define a regular function on Pn:

Definition. Let X ⊂ Pn, and x ∈ X. f : X → k is a function. We say f is regular at x if
one of the following holds:

• f ◦ π is regular on π−1(X) at x̃, where x̃ ∈ V − {0}, and π(x̃) = x.
• f = g

h
on an open neighborhood of x ∈ X, where g, h are homogeneous polynomials

of the same degree, and h(x) 6= 0.
• f |H is regular at x for every affine chart H containing x, or equivalently, f |H is regular

at x for an affine chart H containing x.

September 26: Pause to look at a homework problem. Today we looked at various
ways of solving the tricky homework question of splitting a variety into irreducible pieces.
The variety in question is X = Z(wy − x2, xz − y2). We want to think geometrically; what
are the solutions?

(1) Suppose x = 0, then y = 0 so the solutions are of the form

(w, 0, 0, z) and A2 ∼= X1 := {x = y = 0} ⊂ A4.

(2) Suppose x 6= 0, then wy = x2 so w, y 6= 0 and w = x2

y
, z = y2

x
. Thus the solutions

are of the form (
x2

y
, x, y,

y2

x

)
which is a geometric progression!

There are now two modes of thought on how to proceed for defining this second component
of the variety:

X ′2 := {geometric progressions} or X ′′2 := Z(wy − x2, xz − y2, wz − xy).

These end up being the same set, but the proofs proceed differently.
For visualization purposes, its easiest to draw the relation between these sets projectively.
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Method 1: From the geometric progression perspective, a sequence (w, x, y, z) is a geo-
metric progression if and only if it is of the form (u3, u2v, uv2, v3). So let’s define ϕ : A2 → A4

via (u, v) 7→ u3, u2v, uv2, v3). We’ll see on the homework that if X and Y are topological
spaces, φ : X → Y is a continuous surjection, and X is irreducible, then Y is irreducible.
Thus this image is X ′2 and is irreducible.

Method 2: Try to prove that R := k[w, x, y, z]/〈wy − x2, xz − y2, wz − xy〉 is a domain.
(This actually would also prove that the ideal is radical, but luckily that is true). We could
show that R ∼= k[u3, u2v, uv2, v3] ⊂ k[u, v]. This map is clearly onto, but what about the
kernel? Suppose g(u3, u2v, uv2, v3) 6= 0, we’ll reduce with respect to a Gröbner basis. Using
lex order with w > z > y > x, then wy−x2, xz−y2, wz−xy is already a Gröbner basis, and
so we can keep doing replacements with these generators to decrease the w and z degrees.
Thus we can write g ≡

∑
gijk`w

ixjykz` where either i = k = 0, i = ` = 0, or j = k = 0.
We can graph the possible exponents of monomials uavb, and from the picture we can see
that there is no cancellation between the terms contributed by wixj, by xiyk, and ykz`. So
g must actually be zero, and this is an isomorphism.

wixj 7→ u3i+2jvj

xjyk 7→ u2j+kvj+2k

ykz` 7→ ukv2k+3`

-

u

6v

��
�
��

�
��

�
�

�
�
�
�
�
�
�
�ykz`

xiyk

wixj

q q q q q qq q q q q qq q q q q qq q q q q q

Method 3: Someone in class proposed to look at the map A4 → A4 where (a, b, c, d) 7→
(ac, ad, bc, bd), which we can restrict to a map Z(ad2 − bc2)→ X ′′2 . Some algebra has to be
checked, but this probably works.

Method 4: Let’s prove X2 = Z(〈wy − x2, xz − y2, wz − xy〉) is irreducible. We see that
X2 ∩ {w 6= 0} implies that

p :=
x

w
q :=

y

w
=
x2

w2
r :=

z

w
=
x3

w3

so that q = p2, r = p3. The intersection of X2 with {w 6= 0} is thus clearly irreducible. Put
U = X2 ∩ {w 6= 0}.

(This paragraph, added by Professor Speyer, is what he would have said if we were enough
on the ball, and he still feels like it is a lot longer than it should be.) Let X2 =

⋃
Yi is the

decomposition into irreducible components. So X2 ∩ U =
⋃

(Yi ∩ U) so we have Yi ∩ U = U
for some Yi, let’s say Y1. We claim each irreducible component Yj other than Y1 must
be contained in {w = 0}. To see this, suppose for the sake of contradiction that Yj ∩ U
is nonempty. Then Yj ∩ U is dense in Yj, since Yj is irreducible. But Yj ∩ U would lie
in Y ∩ U = Y1 ∩ U ⊂ Y1, so a dense subset of Yj would lie in Y1, and thus Yj ⊆ Y1, a
contradiction. We thus see that any other irreducible component of X2 must be contained
in {w = 0}.

But X2 ∩ {w = 0} is easily checked to be the z-axis, and the z-axis is easily checked to be
in the Zariski closure of X2 ∩ U .

September 28: Topology and Regular Functions on Projective Spaces. There are
three ways of thinking about almost anything in projective space – by coning and working
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in affine space, by working with homogenous polynomials, and by working in affine charts.
This class was devoted to proving the equivalence of these three ways through group work.

We write z1, . . . , zn+1 for the homogenous coordinate on Pn and π for the map An+1 → Pn.

Theorem. (Closed Sets in Pn) The following are equivalent:

(1) π−1(X) is closed in An+1 \ {0}.
(2) X = ∩g∈SZ(g), where S is a set of homogeneous polynomials in k[z1, . . . , zn+1].
(3) X is closed in {zj 6= 0} ∼= An for 1 ≤ j ≤ n+ 1.

Proof. (1) =⇒ (2): If π−1(X) is closed in An+1 \{0}, let I = I(π−1(X)∪0). It is enough to
show I is a homogeneous ideal. Let f ∈ I and let f = f0 + f1 + · · ·+ fd be the decompostion
of f into homogeneous parts. Then f(λx) = f0(x) + λf1(x) + · · · + λdfd(x). So, if x ∈
π−1(X) \ {0} then

∑
λjfj(x) = 0 for all nonzero λ ∈ k, so f0(x) = f1(x) = · · · = fd(x) = 0

and the fj are in I as desired.
(2) =⇒ (3): If S is a set of homogeneous polynomials such that Z(S) = X, then,

X ∩ {zi 6= 0} = Z({g(z1, . . . , zi−1, 1, . . . , zn)|g ∈ S}). In particular, X ∩ {zi 6= 0} is closed in
{zi 6= 0} ∼= An.

(3) =⇒ (1): Let X ∩ {zi 6= 0} be given by Z({fj}) ⊂ An. Now, An+1 \ {0} is
covered by Ui = π−1({zi 6= 0}), i = 1, . . . , n + 1. Therefore, to show that π−1(X) is
closed in An+1 \ {0}, it suffices to show that π−1(X) ∩ Ui is closed in An+1 \ {0}. But,
π−1(X) ∩ Ui = π−1(X ∩ {zi 6= 0}) = Z({fj}) ∩ Ui ⊂ An+1 \ {0} is closed.

�

Theorem. (Regular Functions on Pn) Let X ⊂ Pn and x ∈ X and let f : X → k. Then,
the following are equivalent:

(1) The function f ◦ π is regular at x̃ where x̃ ∈ π−1(x).
(2) There are homogeneous polynomials g, h, h(x) 6= 0, degree g = degree h, such that,

f = g
h

on an open neighbourhood of x.
(3) f is regular when restricted to {zj 6= 0} where j is chosen such that xj 6= 0.

Proof. (1) =⇒ (3): If f ◦ π is regular at x̃ where x̃ ∈ π−1(x), then, in a neighbourhood U
of x̃, f ◦ π = g

h
for some g, h ∈ k[z1, . . . , zn+1] and h(y) 6= 0 on U . Then, if xj 6= 0, then

choosing a neighbourhood V of x in {zj 6= 0} such that V ⊂ π(U), we have, f =
g(z0,...,x̃j ,...,zn)

h(z0,...,x̃j ,...,zn)

on V where x̃ = (x̃1, . . . , ˜xn+1) ∈ An+1. Therefore, f is regular when restricted to {zj 6= 0}.
(3) =⇒ (2): If f is regular at x when restricted to {zj 6= 0}, then in a neighborhood

of x, we have, f([z0 : · · · : zn+1]) =
g(
z1
zj
,..., zn

zj
)

h(
z1
zj
,..., zn

zj
)
. Then, in the same neighborhood, we have

f([z0 : · · · : zn+1]) =
zNj g(

z1
zj
,..., zn

zj
)

zNj h(
z1
zj
,..., zn

zj
)

where N > degree g, degree h so that zNj g( z1
zj
, . . . , zn

zj
) and

zNj h( z1
zj
, . . . , zn

zj
) are homogeneous polynomials of the same degree.

(2) =⇒ (1): If on a neighbourhood U of x, we have f = g
h

for f, g homogeneous

polynomials of same degree, then on π−1(U), f ◦ π([z0 : · · · : zn+1]) = g(z1,...,zn+1)
h(z1,...,zn+1)

. Therefore,

f ◦ π is regular at x̃. �

October 1 : Products. Summary: We talk about products of quasi-projective varieties,
and show that they exist, and actually are quasi-projective varieties themselves.
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In the case of quasi-affine varieties, the product of varieties sitting inside Am and An are
actually varieties sitting inside Am+n. However, we say in one of the problem sets that the
Zariski topology on the product X × Y of affine varieties X and Y is not the same as the
product topology on X×Y (unlike the categories of topological spaces, or smooth manifolds).

The regular functions on X × Y are just polynomials in {x1, . . . , xm} and {y1, . . . , yn},
where the {xi} are coordinate functions on Am, and {yj} are coordinate functions on An. If
we want to describe the ring of regular functions on X×Y in more algebraic terms, we have
the following description.

OX×Y ∼= OX ⊗k OY

Proposition. For any affine variety Z, and maps fX : Z → X and fY : Z → Y , there
exists a unique map fX×Y : Z → X × Y , which make the following diagram commute.

Z

X × Y

X Y

∃!fX×Y
fX fY

πX πY

Proof. There can clearly exist at most one such map, i.e. fX×Y = (fX , fY ), since regular
functions are also set functions. The only thing we need to verify is that this is actually a
regular map, but that follows by checking on each coordinate. �

When dealing with projective varieties though, products get a little harder. It’s not even
clear what Pm × Pn is (it’s certainly not Pm+n). But here’s a more fundamental question:
what is the topology we want on Pm×Pn, and what are the functions we want to call regular
on Pm × Pn? The answer to the first question is that a subset U of Pm × Pn is open if
U ∩ (Am × An) is open for all affine open sets in Pm × Pn. In a similar spirit, we call a
function f : Pm × Pm → k regular if the restriction to each affine open chart as before gives
a regular function. Now we know that the product of Pm × Pn looks like locally: it locally
looks like an affine variety. We still don’t know whether this a projective variety or not.

The Segre embedding answers our question, by realizing Pm−1 × Pn−1 as a closed subset
of Pmn−1. As the name suggests, it’s an injective map µ from Pm−1 × Pn−1 to Pmn−1.

µ : ([x1 : · · · : xm], [y1 : · · · , yn]) 7→ [x1y1 : · · · : xmyn]

A basis independent way of writing the same map is the following.

µ : ([v], [w]) 7→ [v ⊗ w]

We want to show that the map µ is an embedding, i.e. it’s injective, its image is closed,
and the inverse map from the image is also regular. To show all these results, the following
lemma will be useful.

Lemma. If we restrict µ to the chart where xm 6= 0 and yn 6= 0, then we get a map from
Am−1 × An−1 to Amn−1 which has a regular right inverse σ.
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Proof. Restricting to the given coordinate charts, and normalizing the coordinates so that
xm = 1, and yn = 1, the map µ is given by the following formula.

µ([x1 : · · · : xm−1 : 1], [y1 : · · · : yn−1 : 1]) =


x1y1 x2y1 · · · y1

x1y2 x2y2 · · · y2
...

...
. . .

...
x1yn−1 x2yn−1 · · · yn−1

x1 x2 · · · 1


From this formula, it’s easy to see what the right inverse will be: simply the projection onto
the last rows and columns. That also tells us why the inverse is regular. �

Now we’ll use this lemma to get the properties we want from µ.

Corollary. The map µ must be injective.

This follows because any map that has a right inverse must be injective.

Corollary. The image of µ is a closed set.

Proof. It suffices to check the intersection of the image with each affine chart is closed. Let’s
check the affine chart zmn 6= 0. On this open set, the image is the image of µ when restricted
to the open sets of the lemma. Now we use the fact that σ is the right inverse to µ. That
means σ−1(Am−1 × An−1) is exactly the image of µ. But since σ is a regular map, the
pre-image of a closed set is closed, which gives us the result. �

Corollary. The map from µ(Pm−1 × Pn−1) to Pm−1 × Pn−1 is regular.

We already know that the inverse map locally is regular, thanks to the lemma. But that’s
all we need, since to prove regularity, it suffices to check locally.

Now what we’re interested in knowing is what the image of P1 × P1 looks like when it’s
sitting inside P3. To make visualization simpler, we’ll assume we’re working over the field C.
The map from CP1 × CP1 to CP3 is given by ([x1 : x2], [y1, y2]) 7→ [x1y1 : x1y2 : x2y1 : x2y2].
The image is the zero set of the polynomial z1z4− z2z3. We can change coordinates to make
this polynomial easier to visualize. We pick new coordinates [w1 : w2 : w3 : w4], where
z1 = w1 + iw2, z4 = w1 − iw2, z2 = w3 + iw4, and z3 = w3 − iw4. In these new coordinates,
our polynomial becomes w2

1 + w2
2 = w2

3 + w2
4. We now restrict to the set where w4 6= 0, and

we normalize w4 to be 1. That makes the polynomial w2
1 + w2

2 = w2
3 + 1, in the affine chart

isomorphic to C3. Complex three space is too high dimensional to visualize, so we just look
at the real part of this variety. We get something that looks like Figure 2. Notice that this
is covered with two families of lines. One is lines of the form P1 × {point}, and the other is
lines of the form {point} × P1.

October 3 : Projective maps are closed. Today we discussed the following important
theorem.

Theorem. Let B be a quasi-projective variety and let X be closed in B × Pn. Let π :
B × Pn → B denote the projection map. Then π(X) is closed.

The proof will be given on Friday and we first talked about some applications and the
significance of it.
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Figure 2. An affine piece of P1 × P1, Segre embedded in P3

Take B to be A(m+1)+(n+1) with coordinates (f0, . . . , fm, g0, . . . , gn) and Pn = P2 with
co-ordinates [x : y]. Then we can look at the set

V = Z(f0x
m + f1x

m−1y + · · ·+ fmy
m, g0x

n + g1x
n−1y + · · ·+ gny

n)

which is closed in B × Pn. Hence by our theorem, its projection onto A(m+1)+(n+1) is closed.
If some point, say (f0, . . . , fm, g0, . . . , gn) is in the projection, then it implies that the two
polynomials f0x

m + · · · + fmy
m and g0x

n + · · · + gny
n have a common zero and vice versa.

Now since it is closed in A(m+1)+(n+1), it implies that given two homogeneous polynomials
f, g in variables x, y and of degree m, n, there exists polynomial equations in the coefficients
that determine whether they have a common zero. In fact, the relevant subvariety of Am+n+2

is cut out by a single hypersurface, known as the resultant .
Similarly, one can ask if any number of polynomials in any number of variables have a

common root in projective space.
A particularly interesting case is to ask when f , (∂f)/(∂x1), (∂f)/(∂x2), . . . , (∂f)/(∂xm),

have a common root – in other words, when Z(f) is singular.
The theorem also implies that we can think of Pn as a compact set. The following propo-

sition helps us to see why.

Proposition. Let X be a topological space. Then X is compact if and only if for any other
space B, the projection of any closed subset of B ×X into B is closed.

This is true for arbitrary topological spaces; see Mart́ın Escardó, “Intersections of com-
pactly many open sets are open”. At the moment, the best source I can give for this document
is Escardo’s webpage. See also the discussion at Mathoverflow. We’ll make our lives easy by
just proving the result for metric spaces.

http://www.cs.bham.ac.uk/$\sim $mhe/papers/index.html
https://mathoverflow.net/questions/42186/
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Proof. First, suppose that X is compact. Let (bn) be any sequence in π(X) with a limit point
b. Let bn to (bn, xn) in X. As X is sequentially compact, there is a convergent subsequence
xnk → x. Then (bnk , xnk) converges to (b, x) and so b is in the projection, implying that the
projection is closed.

Conversely, assume that X has this property but is not compact. Then there exists
a sequence (xn) with no convergent subsequence. Now let B = {1, 1

2
, . . . , 1

n
, . . . , 0} and

consider the subset {( 1
n
, xn) | n ∈ N} of B × X. Then this is closed as the (xn) have no

convergent subsequence. But its projection is just {1
1
, . . . , 1

n
, . . .} which has a limit point, 0,

which is not in the projection. Hence the projection is not closed — a contradiction. �

This proposition also sorts of explain why the projection of the hyperbola {xy = 1} in
A2 to A1 is not closed. The points with x-coordinate approaching 0 have the y-coordinates’
escaping to infinity and thus have no convergent subsequence. Hence we are unable to obtain
any point with x-coordinate 0, although we can get any point with x-coordinate around it.

Another way Pn behaves like compact sets is with the following property.

Proposition. Let X be a compact connected complex manifold and f : X → C a holomorphic
function. Then f must be constant.

Proof. If f were not constant, then by connectedness and the open mapping theorem, its
image has to be open. But by compactness, it is also compact in C which cannot be true as
there are no open compact non-empty set in C. �

Proposition. Let X be a closed connected subvariety of Pn and f : X → k a regular
function. Then f is constant.

Proof. We may view f as a regular function from X → A1 and then as A1 injects into P1,
we get a regular function f : X → P1. Now consider the graph of f , Γ(f), which is a subset
of Pn × P1. By a homework problem, we know that Γ(f) is closed and so its projection to
P1 is closed, which is just the image of f . But the point {∞} is not in it where we view
P1 = A1∪{∞} and so the only possible closed sets are finite sets of points. But as the image
is connected, the only possibility is the set having exactly one point and so f is constant. �

October 5 : Proof that projective maps are closed. Today we prove the “projective
varieties behave like compact things” theorem from last time.

Theorem. Let B be a quasiprojective variety, and let X ⊂ B × Pn be Zariski closed. If
π : B × Pn → B is the projection onto first coordinate, then π(X) ⊂ B is Zariski closed in
B.

We first note that it will suffice to prove this in the case where B is an affine variety.
Indeed, if B =

⋃
α Vα where each Vα ⊂ B is an open set isomorphic to an affine variety, then

if π|Vα×Pn(X ∩ (Vα×Pn)) = π(X)∩Vα is closed in Vα for all α, it follows that π(X) is closed
in B (since closedness is a local property, i.e. can be checked on an open cover). Now, we
actually can cover B by affine varieties re: the following lemma.

Lemma. Any quasiprojective variety permits a cover by open sets that are isomorphic to
affine varieties.

Proof. Suppose B ⊂ Pn is a quasiprojective variety. Since Pn is covered by the standard
affine charts An

zi 6=0, we have a cover of B by quasiaffine varieties B ∩ An
zi 6=0. So, it suffices

to prove any quasiaffine variety is covered by affine varieties. In general, let V ⊂ An be
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quasiaffine, and let X = V be an affine closed set. Then Y := X \ V is closed in X, hence
it is the zero set of some f1, · · · , fn ∈ O(X). It follows that V =

⋃n
i=1X ∩ {fi 6= 0}. Each

set DX(fi) := X ∩ {fi 6= 0} is called a distinguished open set, and by a homework problem,
each DX(f) for f ∈ O(X) is isomorphic to an affine variety. �

Back to the proof: moving forward, let us assume B is affine and denote by O(B) the ring
of regular functions on B. Again by a homework problem, we know that any Zariski closed
subset X ⊂ B × Pn is of the form X = Z(I) where I ⊆ O(B)[x0, · · · , xn] is a homogeneous
ideal. We will study the ring S(X) := O(B)[x0, · · · , xn]/I, the “homogeneous coordinate
ring” of X. This ring does not consist of regular functions on X, but its homogeneous ideals
are still in correspondence with the closed subsets of X.

In particular, since π : X → π(X) is continuous, π−1(b) ∩ X is closed in X. The corre-
sponding ideal in S(X) is mbS(X) := mb[x0, · · · , xn]/I where mb ⊂ O(B) is the maximal
ideal of functions vanishing at b; we mean precisely that π−1(b) ∩X = Z(mbS(X)). By the
“projective Nullstellensatz,” it follows that π−1(b)∩X is empty if and only if mbS(X) = S(X)
or mbS(X) ⊃ 〈x0, · · · , xn〉d for some d ≥ 0. Equivalently, π−1(b) ∩ X is empty if and only
if (S(X)/mbS(X))d = 0 for some d ≥ 0, where (S(X)/mbS(X))d denotes the d-graded piece
of the quotient ring.

To show π(X) is closed in B, we should show its complement is open, i.e. that the set of
b ∈ B with π−1(b) ∩X empty is open. By the above, we know that if

Ud := {b ∈ B : (S(X)/mbS(X))d = 0}
then π(X)c =

⋃
d≥0 Ud. Thus, it will suffice to show each Ud is open. Here is where the

sorcery of Nakayama’s Lemma comes into play.

Lemma (Nakayama Statement 2). Suppose R is a ring, M is a finitely generated R-module,
and I ⊂ R is an ideal. Then IM = M if and only if there is some r ∈ R such that r ≡ 1
(mod I) and rM = 0.

Proof. The only if direction is the hard one, which you use the standard determinant trick
to show. Conversely, if there is r ∈ R such that r ≡ 1 (mod I) and rM = 0, then we can
write 1 = r + i for some i ∈ I, hence M = (r + i)M = iM ⊂ IM so IM = M . �

To apply Nakayama, we think of S(X)d as a finitely generated O(B)-module. If ξ ∈ Ud,
then 0 = (S(X)/mξS(X))d = S(X)d/mξS(X)d =⇒ mξS(X)d = S(X)d, so the hypothesis
of Nakayama holds with I = mξ. Thus, there is some f ∈ O(B) such that f ≡ 1 (mod mξ)
and fS(X)d = 0.

Now, note that for any τ ∈ DB(f), since f(τ) 6= 0, there is some c ∈ k such that

f̃ = cf ≡ 1 (mod mτ ). Since f̃S(X)d = 0, the converse of Nakayama’s lemma shows
(S(X)/mτS(X))d = 0; hence ξ ∈ DB(f) ⊂ Ud, which shows Ud is open. This completes the
proof. �

October 8 : Finite maps. A map of commutative algebras A → B is called finite if B
is a finitely generated A-module with respect to this map. We also call the corresponding
map of affine varieties MaxSpecB → MaxSpecA finite.

Proposition. The composition of finite maps is finite:

A B C
finite

finite

finite
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Figure 3. The curve xy2 − y + x = 0 and its vertical asymtote

Proof. Let c1, . . . , cn ∈ C be generators for C as a B-module, and let b1, . . . , bm ∈ B be
generators for B as an A-module. Then {bicj : 1 ≤ i ≤ m, 1 ≤ j ≤ n} generates C as
an A-module, since each γ ∈ C is of the form

∑
j βjcj for some β1, . . . , βn ∈ B and each

βj =
∑

i αijbi for some α1j, . . . , αmj ∈ A, so that

γ =
n∑
j=1

βjcj =
n∑
j=1

(
m∑
i=1

αijbi

)
cj =

∑
i,j

αij(bicj).

This shows that C is a finitely generated A-module. �

Note that if A → B is finite, so is A ⊗k C → B ⊗k C; if b1, . . . , bn generate B as an
A-module, then b1⊗1, . . . , bn⊗1 generate B⊗kC as an A⊗kC-module. Geometrically, this
corresponds to the fact that if Y → X is finite then Y × Z → X × Z is also finite.

From our proof of the Nullstellensatz, we know that finite maps are closed. A finite map
Y → X is also universally closed , i.e. for every Z, the map Y × Z → X × Z is closed.
This follows from the fact that Y × Z → X × Z is finite, as mentioned above.

Not every closed map is universally closed. For example, the curve C = Z(xy2−y+x) has
a vertical asymptote at x = 0. The projection of C onto the x-axis is a closed map, because
the image of the whole curve is A1 (the point (0, 0) maps down to the origin) and the image
of any finite set is clearly finite. However, C is not universally closed. Let g(x, y) = xy − 1
and let X ⊂ C × A1 be the graph of Γ. Then the projection of X onto A1 is the range of
C, and we see that g is nowhere 0 on C, so the projection of X omits the point 0 and is not
closed.

In the context of topological spaces, a map Y → ∗ is universally closed if and only if the
projection Y × Z → Z is closed for all Z, which is equivalent to compactness of Y by a
previous proposition. More generally, a map f : X → Y of topological spaces is universally
closed if and only if it is proper, meaning that, for K ⊆ Y compact, the preimage f−1(K) is
compact.

Proposition. Finite maps of affine varieties have finite fibers. That is, if X = MaxSpec(A),
Y = MaxSpec(B), and f : Y → X is finite with x ∈ X, then f−1(x) is finite.
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Proof. Let ϕ : A → B be the corresponding algebra map, and let mx ⊂ A be the maximal
ideal corresponding to x ∈ X. Then Z(ϕ(mx)) ⊂ Y corresponds to the set of maximal ideals
in B containing ϕ(mx). If f(y) = x, then ϕ−1(my) = mx, so

ϕ(mx) = ϕ(ϕ−1(my)) ⊂ my =⇒ my ∈ Z(ϕ(mx)).

Conversely if my ∈ Z(ϕ(mx)), then

ϕ(mx) ⊂ my =⇒ mx ⊂ ϕ−1(ϕ(mx)) ⊂ ϕ−1(my)

so by maximality, mx = ϕ−1(my) and thus f(y) = x. This shows that Z(ϕ(mx)) corresponds
to f−1(x), so the regular functions on f−1(x) correspond to B/I(f−1(x)) = B/

√
mxB.

Now consider the sequence

B � B/mxB � B/
√
mxB

Note that B/mxB is a finitely generated A/mx-module, i.e. a finite-dimensional vector space
over k ∼= A/mx, since if b1, . . . , bn generate B as an A-module then b1/mx, . . . , bn/mx generate
B/mxB as an A/mx-module. Since B/

√
mxB is a quotient of B/mxB, it is also a finite-

dimensional vector space over k: say dimk B/
√
mxB = d.

Suppose |f−1(x)| = ∞. Let m ∈ N and choose any finite set S ⊂ f−1(x) with |S| = m.
Then S is an affine variety and B/

√
mxB � OS is a surjection, and OS ∼=

∏m
i=1 k so it follows

that dimkOS = m and then dimk B/
√
mxB ≥ m. This then implies dimk B/

√
mxB = ∞,

contradicting our earlier statement, so f−1(x) is finite. (In fact |f−1(x)| = d, since f−1(x) ∼=∏|f−1(x)|
i=1 k implies dimk B/

√
mxB = |f−1(x)|.) �

Theorem. A map Y → X of (affine) varieties is finite if and only if it has finite fibers and
is universally closed.

This theorem seems to be hard, for unclear reasons. It appears as Theorem 29.6.2 in Ravi
Vakil’s The Rising Sea – Foundations of Algebraic Geometry and the proof invokes some
serious machinery, such as Zariski’s Main Theorem. Prof. Speyer would like to know if
anyone knows a simple proof.

We now want to define finite maps between non-affine varieties. We need the following
theorem/definitions:

Theorem. Let Y
f−→ X be a regular map of quasiprojective varieties. The following are

equivalent:

• For all affine U ⊂ X, f−1(U) is affine and f−1(U)→ U is finite;
• There exists an affine cover {Ui} of X such that f−1(Ui) is affine and f−1(Ui)→ Ui

is finite.

If these conditions hold, we call f finite.

Theorem. Let Y
f−→ X be a regular map of quasiprojective varieties. The following are

equivalent:

• For all affine U ⊂ X, f−1(U) is affine;
• There exists an affine cover {Ui} of X such that f−1(Ui) is affine.

If these conditions hold, we call f affine.

These theorems seem somewhat hard. A reference for the former is Proposition 8.2.1 in
Milne’s Algebraic Geometry . For the latter, see Proposition 7.3.4 in Vakil. Shafarevich, to

http://math.stanford.edu/~vakil/216blog/FOAGnov1817public.pdf
http://www.jmilne.org/math/CourseNotes/ag.html
http://math.stanford.edu/~vakil/216blog/FOAGnov1817public.pdf
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Professor Speyer’s annoyance, only proves the weaker statement that, if Y and X are affine,
and X has an affine cover Ui such that f−1(Ui) is affine and f−1(Ui)→ Ui is finite, then OY
is a finite OX module. (Theorem 5 in Chapter I.5.3.)

Here’s one easy case: if U and V are affine, f : V → U is a regular map and h is regular
on U , then

f−1(D(h)) = D(f ∗h).

Also, if OV is a finitely generated OU -module, then (f ∗h)−1OV is a finitely generated f−1OU -
module.

Remark. At this point someone asked whether every affine open subset of an affine variety
is a hypersurface complement. Using local or sheaf cohomology, one can show the following
result:

Proposition. Let Y be irreducible, X ⊂ Y closed, Y affine, with Y − X affine. Then X
has pure codimension 1.

Another question is whether every affine open subset is a distinguished open subset, which
is false. For example, let Y be an elliptic curve in A2, like y2 = x(x−1)(x−3). Let X = {p},
where p is not torsion in the group law on Y . Then Y −X is affine, but is not a distinguished
open.

It is still true in this more general context of quasiprojective varieties that

• Finite maps are universally closed
• Finite maps have finite fibers

because both of these statements are local on the target. Also, a composition of finite maps
is finite; again, this is checkable on a cover of the target.

Finally, we remark on Noether’s normalization lemma:

Lemma (Noether’s Normalization Lemma (v1)). Let f ∈ k[x1, . . . , xn] where k is an infinite
field, with f 6= 0. Then there exists a linear change of coordinates on An such that

f = cxdn + (lower order terms in xn)

where c ∈ k, c 6= 0, and d = deg(f). In such a coordinate system, Z(f)→ An−1 is finite.

Embed An in Pn via (x1, . . . , xn) 7→ [x1 : x2 : · · · : xn : 1] and consider Z(f̃) in Pn, where

f̃ ∈ k[x1, . . . , xn, xn+1] is the homogenization of f . The condition

f = cxdn + (lower order in xn)

means that Z(f) 63 [0 : · · · : 0 : 1 : 0], since each of the terms with lower order in xn have a
term xi (i 6= n) and therefore vanish.

Note that the map Pn−{[0 : · · · : 0 : 1 : 0]} → Pn−1 deleting the nth coordinate is regular,

so if Z(f̃) 63 [0 : · · · : 0 : 1] (e.g. if the condition above holds), we have a regular map

Z(f̃)→ Pn−1 which is closed; see Figure 4 and Figure 5.

October 10: An important lemma. Let X and Y be irreducible affine varieties, f :
Y → X a regular map with dense image. Let X = MaxSpecA and Y = MaxSpecB. The
aim of today, which was constructed as a sequence of problems, was to show that there is a
nonempty open subset U of X contained in the image of Y .
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Figure 4. The projection of the hyperbola onto the horizontal axis is not
closed and therefore not finite.

Figure 5. The projection of this skewed hyperbola onto the horizontal axis is finite.

Note that this is a way in which regular maps are nicer than maps of manifolds: Take Y
to be R and X to be the torus R2/Z2. Let f : Y → X be the map f(y) = (y,

√
2y) mod Z2.

Then f(Y ) is dense in X, but contains no nonempty open set.

Problem. Show that A and B are domains and A injects into B.

Proof. Since X ⊂ An and Y ⊂ Am are irreducible, the ideals I(X) ⊂ k[x1, . . . , xn] and
I(Y ) ⊂ k[y1, . . . , ym] are prime, so the ring of regular functions A = OX = k[x1, . . . , xn]/I(X)
and B = OY = k[y1, . . . , ym]/I(Y ) are domains.

The regular map f : Y → X induces a ring homomorphism f ∗ : A → B by p 7→ p ◦ f .
Since f(Y ) is dense in X, X = f(Y ) = Z(I(f(Y ))), hence I(X) = I(Z(I(f(Y )))) = I(f(Y )).
This means regular functions on X vanishing on f(Y ) vanish everywhere on X. Therefore
if f ∗(p) = p ◦ f = 0, then p vanishes on the image of f , hence vanishes on X, i.e. p = 0 in
OX . This shows injectivity of f ∗ : A→ B. �
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Put K = FracA and L = FracB. Let y1, . . . , yr ∈ B be a transcendence basis for L over
K, so we have A ⊂ A[y1, . . . , yr] ⊂ B and every element in B is algebraic over K(y1, . . . , yr).
Geometrically we can factor f as

Y
g−→ X × Ar h−→ X

Let z1, z2, . . . , zs generateB as a k-algebra. Let zi satisfy the polynomial zNii +
∑Ni−1

j=0 aijz
j
i =

0 where aij ∈ Frac(A[y1, . . . , yr]). Write aij = pij/qij with pij and qij ∈ A[y1, . . . , yr], and

put Q =
∏s

i=1

∏Ni−1
j=0 qij.

Problem. Show that Q−1B is finite over Q−1A[y1, . . . , yr].

Proof. We’ll show that the images of monomials
∏

i z
ei
i for 0 ≤ ei < Ni in Q−1B generate

Q−1B as a Q−1A[y1, . . . , yr]-module. Since each zi satisfies zNii =
∑Ni−1

j=0
pij
qij
zji , the image of

zi in Q−1B satisfies

zi
Ni

1
= −

∑Ni−1
j=0

pij
qij
zji

1

= −
Q(
∑Ni−1

j=0
pij
qij
zji )

Q

= −
∑Ni−1

j=0 tijz
j
i

Q

where tij ∈ A[y1, . . . , yr]. Therefore the images of zNii and hence zNi for any N ≥ Ni in Q−1B

is generated by the images of zi, z
2
i , . . . , z

Ni−1
i over Q−1A[y1, . . . , yr].

Let b
Qk

be any element in Q−1B, b ∈ B. Since z1, . . . , zs generate B as a k-algebra,

b =
∑

I αIz
I for some αI ∈ k, where I = (i1, . . . , is) is a multi-index and zI = zi11 . . . z

is
s . By

what we showed earlier, we can replace each zNi by an A[y1, . . . , yr]-linear combination of
zi, z

2
i , . . . , z

Ni−1
i and possibly changing the exponent k of Q. In other words, we may assume

that (1) ij ≤ Ni − 1 for all j = 1, 2, . . . , s and multi-index I, and (2) αI ∈ A[y1, . . . , yr].
This shows that Q−1B is finitely generated over Q−1A[y1, . . . , yr] by images of monomials as
stated. �

Problem. Show that g(Y ) contains the distinguished open D(Q).

Proof. We have f−1(D(Q)) = D(f ∗Q) essentially by definition. The map D(f ∗Q) → D(Q)
corresponds to the map of algebras Q−1A→ Q−1B. So f(D(f ∗Q)) = f(Y )∩D(Q) is closed
in D(Q). But also, f(Y ) is dense in X and D(Q) is open in X, so f(Y ) ∩D(Q) is dense in
X. Combining these two facts, f(Y ) ∩D(Q) = D(Q), as desired. �

Problem. Show that, for any nonzero Q ∈ A[y1, . . . , yr], the projection π(D(Q)) contains a
nonempty open subset of X.

Proof. Write Q =
∑
ai1···iry

i1
1 · · · yirr , where the ai1···ir are in A. Let x be any point of X. As

long as any of the ai(x) are nonzero, the polynomial
∑
ai1···ir(x)yi11 · · · yirr is not identically

zero as a function of the yj. So, as long as any ai(x) is nonzero, we have x ∈ π(D(Q)). We
have shown that π(D(Q)) =

⋃
i1···ir D(ai1···ir). �



MATH 631 NOTES, FALL 2018 29

October 12 : Chevalley’s Theorem. The goal of this day was to prove Chevalley’s
theorem, which shows that the images of regular maps cannot be too terrible. We proceeded
by a series of problems:

Theorem (Chevalley). If Y is constructible in An and f : An → Am is regular, then f(Y )
is constructible.

Before we prove Chevalley’s theorem, we first introduce the concept of constructible sub-
sets.

Definition (Constructible Subsets). Let T be a topological space. A subset X of T is called
constructible if it can be built from finitely many open and closed sets using the operations
of union, intersection and complement.

Example. Let f : A2 → A2 be the map (x, y) → (x, xy). We have f(A2) = Z(x)c ∪ Z(y),
which is construcible.

Problem. Let C be a constructible subset of a topological space T . Show that we can write
C in the form

⋃m
i=1

⋂ni
j=1Xij, where each Xij is either open or closed.

Proof. Since any open or closed subset is in this form and any constructible subset is obtained
by finitely many union, intersection or complement operations on sets in this form, it suffice
to show that if C1, C2 can be written in this form, then so can C1∪C2, C1∩C2 and Cc

1. Write

C1 =
⋃M
i=1

⋂mi
j=1 Xij, C2 =

⋃N
l=1

⋂nl
k=1 Ykl, where Xij, Ykl are either open or closed subsets of

T , we have

C1 ∪ C2 =

(
M⋃
i=1

mi⋂
j=1

Xij

)⋃(
N⋃
l=1

nl⋂
k=1

Ykl

)
;

C1 ∩ C2 =
⋃

1≤i≤M, 1≤l≤N

( ⋂
1≤j≤mi, 1≤k≤nl

Xij ∩ Ykl

)
;

Cc
1 =

M⋂
i=1

mi⋃
j=1

Xc
ij =

⋃
1≤ji≤mi

M⋂
i=1

Xc
iji
.

Therefore, any constructible subset of T can be written in the form
⋃m
i=1

⋂mi
j=1Xij, where

each Xij is either open or closed. �

Problem. Show further that we can write C in the form C =
⋃m
i=1(Ki ∩Ui) where each Ki

is closed and each Ui is open.

Proof. This follows if we write

mi⋂
j=1

Xij =

 ⋂
1≤j≤mi, Xij is open

Xij

⋂ ⋂
1≤j≤mi, Xij is closed

Xij

 .

�

Problem. Show that every constructible set is a union of affine varieties.

Proof. Write U c
i = Z(f1, ..., fti), then Ui =

⋃ti
j=1 D(fj), where D(fj) := {x|fj(x) 6= 0} are

distinguished open subsets. Since D(fj)∩Ki are affine varieties, we have every constructible
set is a finite union of affine varieties. �
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According to our discussion above, we only need to work with affine varieties since any
constructible set is a finite union of affine varieties. Let Y be an affine variety and f : Y → Am

a regular map. Let Y =
⋃r
i=1 Yr be the decomposition of Y into irreducible components.

Since f(Y ) =
⋃r
i=1 f(Yr), if all the f(Yi) are constructible, then f(Y ) is constructible.

Problem. Let Y be an irreducible affine variety and f : Y → Am a regular map. Let
X = f(Y ). By the lemma proved last time there is a non-empty U open in X such that
U ⊂ f(Y ). Put Y ′ = Y − f−1(U). Show that if f(Y ′) is constructible, then f(Y ) is
constructible.

Proof. This follows from the fact that f(Y ′) ∪ U = f(Y ). �

Problem. Let Y be an affine variety and f : Y → Am a regular map. Show that f(Y ) is
constructible.

Proof. We prove by contradiction. If f(Y ) is not constructible, we can construct a infinite
descending chain of closed subsets of Y as follows:

Let Y1 be one of its irreducible components such that f(Y1) is not constructible. (If
such Y1 does not exist then the image of every irreducible component of Y is constructible,
which implies that f(Y ) is constructible and hence contradicts with our assumption.) We
construct irreducible closed sets Yi such that f(Yi) are not constructible, inductively. Apply

the lemma we proved last time, there exsits an open subset Ui ⊂ f(Yi) such that Ui ⊂ f(Yi).
Let Y ′i = Yi − f−1(Ui), by regularity of f and the previous problem, we have Y ′i is closed
and f(Y ′i ) is not constuctible. Then we define Yi+1 to be one of the irreducible components
of Y ′i such that f(Yi+1) is not constuctible.

Assume Y ⊂ An. From our definition of {Yi}i∈Z+ , Yi+1 ( Yi, which implies I(Yi) (
I(Yi+1) ⊂ k[x1, ..., xn]. This contradicts to the Hilbert Basis theorem, that is, k[x1, ..., xn] is
Noetherian. �

Chevalley’s theorem follows from our last problem and the fact that any constructible set
Y =

⋃m
i=1 Yi where Yi is affine and f(Y ) =

⋃m
i=1 f(Yi).

October 17: Noether normalization, start of dimension theory. Suppose X ⊆ An

is Zariski closed.

Lemma. (Noether Normalization Lemma, first version) If X 6= An (n > 0) , then there is
a linear map π : An → An−1 such that π : X → An−1 is finite.

So π(X) ⊆ An−1 is Zariski closed. If π(X) 6= An−1, we can repeat this argument to see
that there is a linear map π′ : An−1 → An−2 such that π′ : π(X)→ An−2 is finite. Continuing
in this manner:

Lemma. (Noether Normalization Lemma, second version) If X 6= ∅ , then there exists a
nonnegative integer d and π : An → Ad such that π|X : X → Ad is finite and surjective.

Correspondingly, suppose V is a finite dimensional k-vector space, X ⊆ P(V ), X 6= ∅,
then there is a surjective linear map π : V → W such that X 6= P(V ) − P(Kerπ) and
π : X → P(W ) is finite and surjective.

We would consider: could we have an affine variety X such that the maps X → Ad1 and
X → Ad2 are both finite and surjective? The answer is NO. To see why, we remember the
notion of transcendence degree:

Let L/K be a field extension. An s-tuple of elements (y1, ..., ys) in L are called



MATH 631 NOTES, FALL 2018 31

• algebraically independent if there is no polynomial relation among (y1, ..., ys) with
coefficients in K;
• algebraically spanning if ∀z ∈ L, z is algebraic over K[y1, ..., ys] ⊆ L;
• a transcendence basis if (y1, ..., ys) is both algebraically independent and algebraically

spanning.

Conceptually, these notions act like the ones in linear algebra:

• All transcendence basis have the same size, which is called the transcendence degree
of L/K;
• Any algebraic independent set can be extended to a transcendence basis;
• Any algebraic spanning set contains a transcendence basis.

Remark. If you’ve never seen transcendence degree before, you might like to look at Problem
5, Problem Set 9 at Professor Speyers 594 webpage. I actually wrote solutions!

Remark. For those who know the terminology, transcendence bases form a matroid. (Fur-
ther details not given in class:) A matroid of this form is called algebraic. Not all matroids
are algebraic, see Ingleton and Main, Non-Algebraic Matroids exist, (Bull. of the London
Math. Soc., 1975).

Remark. (Remark not made in class:) If K has characteristic zero, then there is a finite
dimensional L vector space, called Ω1

L/K , and a map d : L→ Ω1
L/K , such that (y1, . . . , ys) are

(algebraically independent/algebraically spanning) if and only if (dy1, . . . , dys) are (linearly
independent/spanning). We will learn about this in a few weeks. For K of characteristic
p, the vector space Ω1

L/K still exists and has many other good properties, but this property
does not hold and there is no replacement vector space V and map d : L → V to fix this.
See Lindström, The non-Pappus matroid is algebraic, (Ars. Combin. 1983).

Let X = MaxSpecR be irreducible and affine. Let π : X → Ad be finite and surjective, we
have k[y1, ..., yd] is injective since π has dense image. So k[y1, ..., yd] ⊆ R and k(y1, ..., yd) ⊆
Frac(R) is a finite field extension. So the transcendence degree of Frac(R/k) is d.

Lemma. (On the problem set) If X is irreducible and affine, U ⊆ X is nonempty, affine
and open, then Frac(OU) = Frac(OX).

Corollary. If X is an irreducible quasiprojective variety, U , V are affine, open, nonempty
subsets, then Frac(OU) ∼= Frac(OV ). We call it Frac X.

For irreducible X, we will define the dimension of X to be the transcendence degree of
Frac X/k.

In a reducible space, the different components have may have different dimensions. For
example, Z(xz, yz) = Z(z) ∪ Z(x, y) ⊂ A3 is the union of a 2-plane and a line. If X =
Y1 ∪ ... ∪ Yr where Yi’s are irreducible components of X, set dimX = max dimYj. We say
that X is pure dimensional if dimYj = d for all j. So the example is not pure dimensional.

We have the following easy consequences:

• If X ⊆ Y , X 6= ∅, then dimX 6 dimY ;
• Finite surjective maps preserve dimension;
• If f : X → Y has dense image, Y 6= ∅, then dimX > dimY ;
• dimAn = dimPn = n; if f ∈ k[x1, ..., xn], x /∈ k, then Z(f) ⊂ An has dimension n−1

(in fact this is pure dimension since k[x1, ..., xn] is a UFD);

http://www.math.lsa.umich.edu/~speyer/594_2013/PSet9.pdf
http://www.math.lsa.umich.edu/$\sim $speyer/594$\relax $\@@underline {\hbox {\ }}\mathsurround \z@ $\relax $2013/Soln9.pdf
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• If f = f1...fr is an irreducible factorization then Z(f) =
⋃
i Z(fi) is an irreducible

decomposition.

The following are not straightforward, we will work on them through the next classes:

• If X $ Y , X 6= ∅, Y is irreducible, then dimX < dimY , so any chain X0 $ X1 $
... $ Xl ⊆ Y of irreducible subvarieties of Y has l 6 dimY ;
• If X, Y are irreducible, X ⊆ Y , then there exists an irreducible chain X = Z0 $
Z1 $ ... $ Zl = Y , l = dimY − dimX;
• If X is irreducible, f ∈ OU , Z(f) 6= ∅ or X, then Z(f) is of pure dimension dimX−1;
• We want a result that roughly says that, if f : X → Y is surjective, then most fibers

of f have dimension dimX − dimY .

October 19: Lemmas about polynomials over UFDs. We are going to go through a
bunch of commutative algebra lemmas about the behavior of polynomials over UFDs, which
will be useful at several points in the course. Our immediate payoff will be the following
lemma from Shafarevich I.6.2:

Lemma. If A is a UFD, f , g ∈ A are relatively prime, A ⊆ B, B is a domain and finite
A-module, and h ∈ B, then if f | gh, there’s k ∈ N so that f | hk.

WARNING: In the end, Shafarevich’s proof turned out to be much harder to flesh out than
it should have been, and Professor Speyer has found a route he likes better. This has the
effect that this particular lemma is no longer crucial. However, many of the other lemmas
proved this day are still useful and relevant. In particular, the lemma proved this day which
turns out to be most useful is that, if A ⊂ B are domains, with A a UFD and B finite over
A, and θ ∈ B, then the minimal polynomial of θ over Frac(A) has coefficients in A.

We make some remarks:

Remark. This lemma essentially says that if f, g are relatively prime in A, then they act
relatively prime in the larger ring, B. Also note that the lemma is easy to prove if A is
a PID, since we have x, y ∈ A so that fx + gy = 1. Multiplying both sides by h, we get
fxh+ gyh = h. Since f divides fxh and gyh (f | gh by assumption), f | h as well (and we
don’t even need a larger power of h).

Remark. Karthik noted that the conclusion of the lemma is similar to the ideal (f) being
primary in B. Certainly if (f) is primary, then the conclusion of the lemma holds. However,

the hypotheses of the theorem don’t force (f) to be primary, or even force
√

(f) to be prime,
so it is unclear what to do with this.

Remark. Here is an intuitive argument for the lemma. Making it precise requires us to jus-
tify our intuitions about dimension. Let π : MaxSpec(B)→ MaxSpec(A) be the map induced
by the inclusion. Then π∗(f) | π∗(g)h implies Z(π∗(f)) ⊆ Z(π∗(g)h) = Z(π∗(g)) ∪ Z(h).
So at every point of Z(π∗(f)), either π∗(g) = 0 or h = 0, so in particular, h = 0 on
Z(π∗(f)) − Z(π∗(g)). Now Z(f) should be codimension 1 in X and, since π is finite,
the preimage Z(π∗(f)) should be codimension 1 as well. The condition that f and g
are relatively prime means that Z(f) ∩ Z(g) should be codimension 2, and likewise for
Z(π∗f) ∩ Z(π∗g). So Z(π∗(f)) − Z(π∗(g)) should be dense in Z(π∗f) and thus we should
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have h = 0 on Z(π∗f). By the Nullstellansatz, this means that hk ∈ (f) for some k.

Now, the series of lemmas. For the remainder of this class, A will be a UFD and K =
Frac(A).

Definition. Let a(x) =
∑d

i=1 aix
i ∈ A[x]. We call a(x) primitive if gcd(a0, . . . , ad) = 1.

Lemma (Gauss’s Lemma). The product of primitive polynomials is primitive.

Proof. Let a(x) =
∑
aix

i, b(x) =
∑
bjx

j be primitive polynomials, and let c(x) = a(x)b(x) =∑
ckx

k be their product. To show that c(x) is primitive, we must show that for any prime

p ∈ A, there is some ck 6≡ 0 mod p, or equivalently, c(x) 6= 0 ∈ (A/p)[x].
Since p is prime, A/p is a domain, so (A/p)[x] is also a domain. Since a(x) and b(x)

are primitive, they are both non-zero in (A/p)[x]. (A/p)[x] a domain then implies c(x) =

a(x)b(x) 6= 0 ∈ (A/p)[x]. �

Corollary. If c(x) ∈ A[x] factors in K[x], then c(x) factors in A[x].

Proof. Let c(x) = a(x)b(x) with a(x) and b(x) ∈ K[x]. Take α, β ∈ K so that a(x) = αa0(x)
and b(x) = βb0(x) with a0(x), b0(x) ∈ A[x] are both primitive. Then

c(x) = (αβ)a0(x)b0(x).

If (αβ) /∈ A, then there’s some prime in the denominator of (αβ), which cannot divide all
the coefficients of a0(x)b0(x) since the product a0(x)b0(x) is primitive by Gauss’s lemma.
But c(x) ∈ A[x] by assumption, so this is impossible. Therefore, c(x) factors in A[x]. �

Corollary. Let f(x) ∈ A[x] be a monic polynomial. Let f(x) =
∏
gj(x) be a factorization

of f(x) into monic irreducible polynomials in k[x]. Then all gj(x) are in A[x].

Remark. The conclusion of the previous corollary holds as long as A is integrally closed in
Frac(A).

Corollary (Rational Root Theorem). If f(x) =
∑
fjx

j ∈ A[x], p/q ∈ k (written in lowest
terms, so that p, q have no common divisors), with f(p/q) = 0, then q | fn and p | f0.

Proof. f(p/q) = 0 means f(x) = (x−p/q)g(x) in k[x]. We can then rewrite the factorization
as (qx − p)g(x). By the previous corollary, g(x) ∈ A[x]. Then fn = qgn−1 and f0 = pg0,
proving the claim. �

Corollary. UFD’s are integrally closed in their fraction field.
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Proof. We need to show that any element of k = Frac(A) that satisfies a monic polynomial
with coefficients in A is itself an element of A. Let p/q ∈ k be a root of xn+fn−1x

n−1+. . .+f0.
By the previous corollary, q | 1 in A, so 1/q ∈ A, hence p/q ∈ A. �

Corollary. If A is a UFD, so is A[x].

Proof Sketch. First note that if f(x) is irreducible in A[x], then either

(1) f(x) ∈ A and is irreducible in A.
(2) f(x) is primitive and irreducible in K[x]. (If f(x) is not primitive, it factors as pg(x)

for p ∈ A. If f(x) is not irreducible in K[x], then it factors in A[x] by the previous
lemma.)

Now suppose for a contradiction that∏
pi
∏

fj(x) =
∏

qk
∏

gl(x)

where pi, qk ∈ A are irreducible and fj(x), gl(x) are irreducible in k[x] and primitive. Now
since k[x] is a UFD, the fj are a rearrangement of gl, up to an element of K∗, which since
the fi, gl are primitive is actually up to an element of A∗.

By Gauss’s lemma, the products
∏
fj and

∏
gl are primitive and differ by a unit of A∗.

Thus,
∏
pi and

∏
qk differ by a unit of A∗ and we can apply unique factorization in A. �

In particular, Z[x1, . . . , xn] and k[x1, . . . , xn] are UFD’s.
Now we are ready to prove the main lemma.

Lemma. Let A be a UFD, f, g ∈ A relatively prime, A ⊆ B, B a domain and a (module)
finite extension of A, and h ∈ B. If f | gh, then for some k ∈ N, f | hk.

Proof. Let u ∈ B so that gh = fu. Since A ⊆ B is module finite, u is integral over A, hence
satisfies a monic polynomial with coefficients in A. Additionally, as an element of Frac(B), u
has a minimal polynomial over Frac(A). Because A is a UFD, the minimal polynomial of u
divides the monic polynomial given by the integrality of u, so u’s minimal monic polynomial
is in A[x].

Let the minimal monic polynomial of u be:

T n + an−1T
n−1 + · · ·+ a0

h = (f/g)u, so the minimal polynomial of h is:

T n +
f

g
an−1T

n−1 + · · ·+ fn

gn
a0

Since h is also in B (and thus integral over A), the coefficients (f/g)jan−j must also be in
A, so gj | an−1 in A because f, g are relatively prime. Therefore,

hn + f
an−1

g
hn−1 + · · ·+ fn

a0

gn
= 0 =⇒ hn = −f

(
an−1

g
hn−1 + · · ·+ fn−1 a0

gn

)
So f | hn. �
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October 22: Krull’s Principal Ideal Theorem – Failed Attempt. The aim of this
day was to prove Krull’s principal ideal, which comes in both affine and projective versions:

Theorem (Krull’s principal ideal theorem, affine version). Let Y be an irreducible affine
variety of dimension d and let θ be a polynomial with Y 6⊆ Z(θ). Then every irreducible
component of Z(θ) ∩ Y has dimension d− 1.

Theorem (Krull’s principal ideal theorem, projective version). Let Y be an irreducible
projective variety of dimension d and let θ be a homogenous polynomial with Y 6⊆ Z(θ).
Then every irreducible component of Z(θ) ∩ Y has dimension d− 1.

It is easy to reduce the projective version to the affine version and Professor Speyer tried
to do the proof purely in the affine world. Shavararevich does a complicated shuffle where
he reduces the affine case to the projective case, and then reduces the projective case back
to a special case of the affine case. Unfortunately, this shuffle seems to be necessary for
Shavarevich’s approach (which means that Professor Speyer no longer likes this approach so
much).

I am going to omit notes from this day and try a better route the next day.

October 24: Krull’s Principal Ideal Theorem – Take Two. The main objective
today is to prove Krull’s principal ideal theorem. The argument here is drawn from the
proof Theorem 3.42 in Milne’s notes , Section 3.m. Milne credits it to Tate.

Given a field extension L/K, recall that the norm NL/K : L → K is defined so that
NL/K(θ) is the determinant of the K-linear map L → L given by x 7→ θx. Note that if

T d + ad−1T
d−1 + · · ·+ a0 is the minimal polynomial of θ over K, then NL/K(θ) = ±a[L:K(θ)]

0 .
We first prove the following lemma.

Lemma. Let A be a UFD, let B be a domain, and let A ⊆ B with B finite over A. Writing
L = FracB, K = FracA, we have for all θ ∈ B,

NL/K(θ) ∈ A and θ|NL/K(θ) in B.

Remark. We could weaken the above hypothesis so that A is only integrally closed in FracA.

Remark. The above lemma does not hold for A a general domain. For example, consider
Z[
√

8] ⊆ Z[
√

2] and θ =
√

2.

Proof of Lemma. Let F = K(θ). Then NL/K(θ) = NF/K(θ), and so it is enough to show the
desired result holds for NF/K(θ). Let T d + ad−1T

d−1 + · · · + a0 be the minimal polynomial
of θ over K. The coefficients aj all lie in A. In particular,

a
[L:F ]
0 = ±NF/K(θ) ∈ A,

and

a0 = −(θd−1 + ad−1θ
d−2 + · · ·+ a1)θ.

�

We may now prove Krull’s principal ideal theorem.

Theorem (Krull’s principal ideal theorem). Let Y be an irreducible quasiprojective variety
with dimY = d, and let θ be a regular function on Y with θ 6= 0. Then every irreducible
component Z of Z(θ) has dimension d− 1.

http://jmilne.org/math/CourseNotes/AG.pdf
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Proof. We reduce to the affine case, and then further reduce to a smaller affine neighborhood.
Choose a point p ∈ Z not contained in any other irreducible component of Z(θ). Choose a
distinguished open neighborhood U of p such that U does not intersect any other irreducible
component of Z(θ). Since U is a distinguished open, U is affine, and we have dim(Z ∩U) =
dimZ. Furthermore, the zero locus of θ as a function on U is just Z∩U , since Z(θ)∩U = Z∩U
by assumption. In summary, we have reduced to the case where Z(θ) = Z, so let us assume
this equality from here onward.

Choose a Noether normalization U
π−→ Ad. Since π is a finite map, its image π(Z) is closed

in Ad, and π(Z) has the same dimension as Z. We want to come up with a function on Ad

that vanishes precisely on π(Z).
Let B be such that U = MaxSpecB, and let us write a = NFracB/k(x1,...,xd)(θ). By the

above lemma, we have a ∈ k[x1, . . . , xd]. Since k[x1, . . . , xd] is a UFD, we can write a prime
factorization a =

∏
pkii . Let r =

∏
pi, noting that the principal ideal generated by r is

radical, and that Z(r) = Z(a). We will show that π(Z) = Z(a) = Z(r). (Note: This will
imply that Z(r) is irreducible, so it turns out there is only one prime pi.)

First, we show that π(Z) ⊆ Z(a). For this, we must show that π∗a vanishes on Z = Z(θ).
But indeed, the above lemma tells us that θ|a in B, and so π∗a does in fact vanish on Z.
Hence π(Z) ⊆ Z(a).

Now, we show that Z(r) ⊆ π(Z). Since π(Z) is closed in Ad, it is the zero locus of some
collection of polynomials on Ad. Let a′ be some such polynomial. We must show that a′

vanishes on all of Z(r). Observe that

a′ vanishes on π(Z) ⇐⇒ π∗a′ vanishes on Z

⇐⇒ (π∗a′)` = θβ for some β ∈ B, ` ≥ 0. (Nullstellensatz)

Note that the norm map N = NFracB/k(x1,...,xd) is multiplicative. Applying the norm map to
the last of the above equivalent conditions gives the equation

N((π∗a′)`) = N(θ)N(β)

(a′)[FracB:k(x1,...,xd)]` = aN(β).

In particular, a divides a power of a′. Since B is a UFD, this implies that r|a′. Therefore
Z(r) ⊆ Z(a′) ⊆ π(Z), as desired. We conclude that π(Z) = Z(a), and hence has dimension
d− 1. Thus Z also has dimension d− 1, and so we are done. �

Remark. Note the significance of a ring’s being a UFD to this proof. To get a geometric
sense for the UFD condition, we comment that

A is a UFD ⇐⇒ Every codimension 1 prime of A is principal.

For the remainder of the lecture, we consider some easy variants/corollaries of Krull’s
principal ideal theorem.

Corollary. Let Y be of pure dimension d, and let f1, . . . , fr be regular functions on Y . Then
every irreducible component of Z(f1, . . . , fr) has dimension ≥ d− r.

Proof strategy. Induction on r. �

Corollary. Let X, Y ⊆ An be of pure dimensions d and e, respectively. Then each irreducible
component of X ∩ Y has dimension ≥ d+ e− n.



MATH 631 NOTES, FALL 2018 37

Proof. We “reduce to the diagonal:”
The intersection X∩Y ⊆ An is isomorphic to (X×Y )∩∆ ⊆ A2n, where ∆ is the diagonal
{(x, x) ∈ An×An = A2n}. Now, dim(X × Y ) = d+ e, and ∆ is given by n linear equations.
Hence dim(X ∩ Y ) = dim((X × Y ) ∩∆) ≥ d+ e− n, as desired. �

Corollary. If X, Y ⊆ Pn are closed of pure dimensions d and e, respectively, then each
irreducible component of X ∩ Y has dimension ≥ d+ e− n. Furthermore, if d+ e− n ≥ 0,
then X ∩ Y 6= ∅.

Proof sketch. For the first claim, pass to affine patches.
For the second claim, consider the closed subsets Cone(X),Cone(Y ) ⊆ An+1. Their inter-

section has dimension at least (d+1)+(e+1)−(n+1) ≥ 1, and hence 0 ∈ Cone(X)∩Cone(Y ).
Therefore there are nonzero points lying in Cone(X) ∩ Cone(Y ). �

October 26: Dimensions of Fibers. From last time, we know that if Y is irreducible of
dimension d and f is a nonzero regular function on Y , then Z(f) is pure dimension d − 1.
We get two corollaries from this.

Corollary. Suppose Y is pure dimension d, and f1, . . . , fr are regular functions on Y .
Then every component of Z(f1, . . . , fr) has dimension ≥ d− 1.

Corollary. Suppose X, Y are closed in An or Pn, X has pure dimension D, and Y has pure
dimension e. Then every component of X ∩ Y has dimension ≥ d+ e− n.

These are analogous to results in complex geometry and contrary to the corresponding
real cases. For example, consider the intersection of the surfaces defined by z = 1 and
x2 + y2 + z2 = 1 (see the diagram below). Points in the intersection must satisfy z = 1 and
x2 + y2 = (x+ iy)(x− iy) = 0. In the real case, there is only one such point. In the complex
case, we get a pair of lines as the intersection. In essence, things can intersect more than
expected, but not less.

We now prove that our notion of dimension using fraction fields coincides with Krull
dimension from commutative algebra.

Theorem. Let Xe ⊆ Xd with Xe irreducible of dimension e and Xd irreducible of dimension
d. Then ∃Xe ( Xe+1 ( · · · ( Xd with Xj irreducible of dimension j.

Proof. We first reduce to the affine case. We will induct on d− e. The base case of e = d is
obvious (we need not find any additional Xj’s). Now suppose e < d. Take a regular function
f on Xd so that f |Xe = 0. Note that Xe ⊆ Z(f). Since Xe is irreducible, Xe ⊆ Xd−1 for
some irreducible component Xd−1 of Z(f) with dimXd−1 = d− 1. We have now reduced to
d− e− 1, so we induct. �

In general, Krull dimension is more robust than transcendence degree. For example, we
may consider the chain of ideals in Z: (0) ⊆ (x) ⊆ (x, 3). In Q, this chain collapses to
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(0) ⊆ (x). Thus, passing to the fraction field can lose information about the structure of a
ring. Krull dimension also allows us to reason about more complicated rings (e.g. the Krull
dimension of entire functions on C is 1). However, treating Krull dimension in general brings
up additional concerns that we do not want to worry about for now.

We now wish to prove some results about dimensions of fibers of regular maps.

Theorem. Let X and Y be irreducible of dimensions m and n, respectively. Let π : Y → X
be a regular map. Then

(1) ∀x ∈ X, π−1(x) = ∅ or dim π−1(x) ≥ n−m.

(2) Suppose π(Y ) = X. Then there exists a nonempty U ⊆ X s.t. π−1(x) 6= ∅ and
dimπ−1(x) = n−m ∀x ∈ U .

Remark. Note that (1) is not true in R. Let X = R2 and Y = R. Take π(x, y) = x2 + y2.
Then π−1(0) = {(0, 0)}, which has dimension 0 < 2− 1.

Theorem. Let X and Y be quasi-projective varieties and π : Y → X a regular map.

(3) For y ∈ Y , define d(y) to be the maximal dimension of an irreducible component of
π−1(π(y)) containing y. Then ∀k, {y ∈ Y : d(y) ≥ k} is closed.

(4) If π : Y → X is closed, then ∀k, {x : π−1(x) 6= ∅ and dimπ−1(x) ≥ k} is closed.

As an example of d(y) (or dimension at the point y), see the diagram below on the left.
We have a union of a line and a plane. The dimension at any point on the plane (including
the intersection point) is 2. The dimension at a point y off of the plane is 1.

(3) and (4) essentially state that fiber dimension is upper semi-continuous. That is, dimen-
sion can only go up as we approach a point. In (4), we have some additional considerations
due to the fact that some points may not be hit by our map at all. As an example, consider
π : A2 → A2 with π(x, y) = (x, xy) (shown in the diagram below on the right). We have that
the fibers of most points are points (dimension 0), but the fiber of (0, 0) is a line (dimension
1). Thus, the dimension 1 points form a closed set. In the image, we see that we run into
trouble because our map is not closed.

We now prove these claims.

Proof of (1). The statement is local on X, so we may assume X is affine. Take a Noether
normalization ν : X → Am. The following argument can be visualized with the diagram
below:
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Note that

π−1(ν−1(ν(x))) =
⊔

x′∈ν−1(x)

π−1(x′).

Thus, irreducible components of π−1(x) must also be irreducible components of (ν◦π)−1(ν(x)).
We can write ν(x) = Z(f1, . . . , fm) where f1, . . . , fm are linear functions on Am. Then
(ν ◦ π)−1(ν(x)) = Z(π∗f1, . . . , π

∗fm), so every irreducible component has dimension ≥
n−m. �

Proof of (2). We first reduce to the affine case. Recall from Wednesday, October 10, that if
Y and X are irreducible and π : Y → X is dominant, then there exists a nonempty open
U ⊆ X s.t. π−1(U)→ U factors through a finite, surjective map as π−1(U)→ U ×Ad → U .
Notice dimπ−1(U) = dimY = n and dimU × Ad = dimU + d = m + d, so n = m + d. So
for x ∈ U , π−1(x) is finite and surjective over An−m. Thus, dim π−1(x) = n−m. �

Proof of (3). We induct on dimX. If dimX = 0, the statement says d(y), defined to be the
maximal dimension of an irreducible component of Y through y, is uppper semicontinuous.
Note that

{y : d(y) ≥ k} =
⋃

Z irreducible component of Y,

dimZ≥k

Z.

Each irreducible component is closed, and the union of closed sets is closed, so {y : d(y) ≥ k}
is closed. Hence, d(y) is upper semicontinuous, finishing our base case.

Note that if Y is not irreducible, we can write Y =
⋃
Yj for irreducible Yj. The theorem

then follows from the theorem from each Yj → X. Thus, we may assume that Y is irreducible.

We may also replace X by π(Y ), so we may assume X is irreducible.
Let dimX = m and dimY = n. If k ≤ n−m, we are done, since d(y) ≥ k ∀y ∈ Y . Thus,

we may assume k > n −m. Choose U ⊆ X as in (2). Then d(y) = n −m for y ∈ π−1(U).
Replace X by X ′ = X − U and Y by π−1(X ′). Since dimX ′ < dimX, we may induct. �

Proof of (4). Note that

{x ∈ X : π−1(x) 6= ∅ and dimπ−1(x) ≥ k} = π({y ∈ Y : d(y) ≥ k}).
Thus, the statement follows from (3) and the condition that π is closed. �
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October 29: Hilbert functions and Hilbert polynomials. Today we study Hilbert
functions, a subject which connects dimension to combinatorial commutative algebra. We
will have the problem that we want to talk both about dimension and degree a lot today;
we’ll try to stick to the convention that dimensions are called “d” and degrees are called “δ”.

Let A = k[x0, . . . , xn] with its usual grading, and let M be a finitely generated graded
A-module. We define the Hilbert function of M to be:

hfunc
M (t) := dimkMt.

We have the following basic commutative algebra lemma:

Lemma. There is a polynomial hpoly
M (t), of degree ≤ n, such that hfunc

M (t) = hpoly
M (t) for t

sufficiently large.

Proof (omitted in class). Our proof is by induction on n. In our base case, n = −1, we have
A = k, so M is a simply a finite dimensional graded vector space. Then Mt = 0 for t � 0,
so we can take hpoly

M (t) = 0.
Now for the inductive case. Let A′ = k[x0, . . . , xn−1] = A/xn. Let K and Q be the kernel

and cokernel of multiplication by xn on M , so we have an exact sequence

0→ K →M
xn−→M → Q→ 0.

Degree by degree, we have an exact sequence

0→ Kt →Mt
xn−→Mt+1 → Qt+1 → 0

so we deduce
hfunc
M (t+ 1)− hfunc

M (t) = hfunc
Q (t+ 1)− hfunc

K (t).

(This is several applications of the rank-nullity theorem, but by now you should learn the
more general fact that, in any exact sequence of vector spaces, the alternating sum of di-
mensions is 0.)

We note that K and Q are A′ modules and are finitely generated (the former by Hilbert’s
basis theorem in M , the latter because Q is a quotient of M). So there are Hilbert poly-

nomials hpoly
K and hpoly

Q . We deduce that, for t sufficiently large, hfunc
M (t + 1) − hfunc

M (t) is a

polynomial of degree ≤ n− 1 in t. So hfunc
M is a polynomial of degree ≤ n in t. �

If X is Zariski closed in Pn, with radical ideal I, we write hfunc
X and hpoly

X for hfunc
k[x0,...,xn]/I

and hpoly
k[x0,...,xn]/I .

We begin with several examples:

Example. If X is all of Pn, we want to compute the Hilbert function of k[x0, . . . , xn] itself. So
we want to compute the dimension of the vector space of degree t homogenous polynomials
in x0, x1, . . . , xn. Using the obvious basis of monomials, this is #{(a0, a1, . . . , an) : 0 ≤
aj,

∑
aj = t}. This is

(
n+t
n

)
for t ≥ 0. For t < 0, we have hfunc(t) = 0, but hpoly(t) is by

definition given by
(
n+t
n

)
= (t+n)(t+n−1)···(t+1)

n!
. For future reference, we observe that this is a

polynomial with leading term tn

n!
.

Example. Let f(x, y, z) be a squarefree degree δ polynomial in A := k[x, y, z]; we compute
the Hilbert polynomial of Z(f). In other words, we must compute the dimension of the

degree t part of the ring A/fA. We have a short exact sequence 0→ A
f−→ A→ A/fA→ 0

which, degree by degree, gives 0 → At−δ → At → (A/fA)t → 0. So dim(A/fA)t =

dimAt − dimAt−δ =
(
t+2

2

)
−
(
t−δ+2

2

)
= δt+ 3δ−δ2

2
.
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Remark. Above, we wrote A
f−→ A. If you read more sophisticated sources, you will

see that they write A[−δ] f−→ A. The reason for this is that a map of graded modules,

by definition, is required to preserve degree, so A
f−→ A is not a map of graded modules.

The notation A[−δ] means A with shifted grading: A[−δ]j := Aj−δ. I find this convention
confusing and will avoid it when possible.

Example. Let’s specialize the previous example to δ = 2, with Z(f) a smooth conic. So

δt + 3δ−δ2
2

= 2t + 1. We note that a smooth conic is isomorphic to P1 (if f = xz − y2, the
isomorphism is (x : y : z) = (t2 : tu : u2) for (t : u) in P1). So the Hilbert series of P1 as
a subvariety of itself (or as a line in P2) is t + 1, but the Hilbert series P1 embedded as a
smooth conic in P2 is 2t+ 1.

Example. We can generalize the previous example as follows: For any positive integers m

and r, we have the r-uple Veronese embedding v : Pm → P(m+r−1
m )−1, such that degree r

equations in Pm are restrictions of linear equations from the big projective space. We looked
at the 2-uple Veronese P2 → P5 in a previous problem set. If X is Zariski closed in Pm, we
have h∗v(X)(t) = h∗X(rt), where the ∗ could be either func or poly.

Remark. We have seen that hpoly
X depends on the embedding of X in Pn, not just on the

abstract isomorphism type of X. Here is something which was incredibly mysterious in the
nineteenth century: hpoly

X (0) only depends on X! We’ll prove this later this term for curves;
the proof for general X involves inventing sheaf cohomology.

We now want to connect Hilbert polynomials to degree.

Theorem. Let X be Zariski closed in Pn of dimension d. Then the leading term of hpoly
X is

of the form δ
d!
td for a positive integer d called the degree of X.

This proof is slightly restructured from the presentation in class.

Lemma. Let A = k[x0, . . . , xd]. Let M be a finitely generated graded A-module and suppose

that the action of A on M factors through A/fA for some nonzero f . Then hpoly
M has degree

< d.

Proof of Theorem. Choose a Noether normalization A/fA → k[x0, . . . , xd−1]. Then M is a
finitely generated graded k[x0, . . . , xd−1] module. �

Proof. Let B be the homogenous coordinate ring of X. Choose a Noether normalization
X → Pd, and let A be the homogenous coordinate ring of Pd. So B is a finite A-algebra.
Let δ be the dimension of B ⊗A Frac(A) as a Frac(A) vector space. So we can choose
β1, β2, . . . , βδ in B giving a Frac(A) basis for B ⊗A Frac(A) over Frac(A); let βj have
degree δj. This gives an injection

⊕
A[−δj] → B with some cokernel Q. We deduce that

hpoly
B (t) =

∑δ
j=1 h

poly
A (t− δj) + hpoly

Q (t) =
∑δ

j=1

(
t−δj+d

d

)
+ hpoly

Q (t). The sum has leading term
δ
d!
td, so we must show that hpoly

Q has degree < d.
We have Q⊗A Frac(A) = 0, and Q is finitely generate, so Q is an A/fA-module for some

f . So the lemma tells us that deg hpoly
Q < d, as desired. �

Remark. On the homework, you will establish the following: Let X be Zariski closed
in An with ideal I. Let k[x1, . . . , xn]≤t be the set of polynomials of degree ≤ t. Then
dim k[x1, . . . , xn]≤t/(I ∩ k[x1, . . . , xn]≤t) is a polynomial in t for t� 0, of degree dimX.
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Remark. There is another nice result along these lines. Let X be an affine variety with co-
ordinate ring A, and let x ∈ X correspond to the maximal ideal mx ⊆ A. Then dimk A/m

t+1
x

is polynomial in t for t � 0. The degree of this polynomial is the largest dimension of any
irreducible component of X containing x. The leading term is δ

d!
td where δ is the so-called

muliptlicity of x. The function dimk A/m
t+1
x is called the Hilbert-Samuel function .

October 31: Bezout’s Theorem. Today we discuss Bezout’s theorem:

Theorem. (Imprecise version) Let f, g ∈ k[x, y, z] be relatively prime homogeneous polyno-
mials of degrees d and e. Then f = g = 0 has de solutions.

There are several caveats in the above version:

• Need k to be algebraically closed.
• Need to work in P2 instead of A2. Two curves in A2 may intersect at infinity, and we

need to take that into account.
• Need to count multiplicity, e.g., a line tangent to a circle intersects the circle at a

point of multiplicity 2.
• Need to rule out the possibility that the curves have a component in question, such

as a line intersecting itself.

On commutative algebra side, the precise statement is the following:

Theorem. Let f and g ∈ k[x, y, z]be relatively prime homogeneous polynomials of degrees
d and e. The Hilbert polynomial of k[x, y, z]/(f, g) is the constant polynomial de.

Proof. Let A = k[x, y, z]. f, g being relatively prime implies that g is not a zero-divisor in
A/fA and we have the following short exact sequence:

0→ A/fA
·g−→ A/fA→ A/(f, g)→ 0.

So by results from last time, we have

hA/(f,g)(t) = hA/fA(t)− hA/fA(t− e)

=

[(
t+ 2

2

)
−
(
t− d+ 2

2

)]
−
[(
t− e+ 2

2

)
−
(
t− d− e+ 2

2

)]
= de.

�

Note that for any ideal I, I ⊆
√
I, and hence A/I → A/

√
I is surjective, which further

implies that dim(A/I)t ≥ dim(A/
√
I)t. Thus hpoly

A/
√

(f,g)
= m ≤ de for some integer m.

Claim. This m is actually the number of geometric points of intersection.

Proof of Claim. It suffices to show that if p1, · · · , pc ∈ Pn are c distinct points, then hpolyp1,··· ,pc(t) =
c. In fact, if all of the points are in An, then O{p1,··· ,pc} ∼= k⊕c. Now choose a hyperplane
{λ = 0} not passing through any pi. Let U = {λ 6= 0} ∼= An. Then functions regular on
U are of the form f

λD
for some f ∈ k[x0, · · · , xn]. Let R denote the reduced homogeneous

coordinate ring of {p1, · · · , pn}. For each t, we get a map Rt → O{p1,··· ,pc}, f 7→
f
λt

. Thus we
have a sequence of maps

R0
λ
↪→ R1

λ
↪→ R2

λ
↪→ · · ·O{p1,··· ,pc}

It terminates since O{p1,··· ,pc} is finite dimensional, i.e., for large t, we have Rt
∼= O{p1,··· ,pc}.

This implies that the Hilbert polynomial is c. �
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What about Pn? If f1, · · · , fn ∈ k[x0, · · · , xn] are homogeneous polynomials of degrees
d1, · · · , dn, is Z(f1, · · · , fn) given by d1 · · · dn points with multiplicity? The answer is yes,
but the commutative algebra is harder.

Definition. f1, . . . , fn is called a regular sequence in a ring R if fj is not a zero-divisor
in R/(f1, · · · , fj−1) for all j.

This definition is exactly what we need to produce an exact sequence. Thus we have

Theorem. If f1, . . . , fn is a regular sequence, then hpoly
k[x0,··· ,xn]/(f1,··· ,fn) = d1 · · · dn.

But a more geometrically natural condition is that dimZ(f1, · · · , fn) = 0.

Definition. Let R be a commutative ring of Krull dimension k. R is called Cohen-
Macaulay if whenever R/(f1, · · · , fj) has dimension k− j, f1, · · · , fj is a regular sequence.

This definition has roots in the following two theorems:

Theorem. (Macaulay, 1916) k[x0, · · · , xn] is Cohen-Macaulay.

Theorem. (Cohen, 1946) Regular rings are Cohen-Macaulay.

There is a good discussion about the Cohen-Macaulay issues at Mathoverflow .

November 2: Tangent spaces and Cotangent spaces. We define Tangent spaces at
points of our variety so that we can talk about smoothness. We show that what we see in
our calculus classes agrees with the commutative algebra definition.

Let f ∈ k[x1, . . . , xn] and let ~v = (v1, . . . , vn) ∈ kn. Recall that the directional deriva-
tive is defined by

∇~v(f) =
n∑
j=1

vj
∂f

∂xj
.

Lemma. Let f1, f2, . . . , fm ∈ k[x1, . . . , xn]. Let I be the ideal 〈f1, f2, . . . , fm〉 and let
A = k[x1, . . . , xn]/I. Let X = Z(I) and let a ∈ X, with corresponding maximal ideal
ma ∈ A.

For a vector ~v in kn, the following are equivalent:

(1) The map f 7→ ∇~v(f)(a) from k[x1, . . . , xn]→ k, descends to a map A→ k.
(2) For every f ∈ I, we have

∇~v(f)(a) = 0.

(3) For each 1 ≤ i ≤ m, we have

∇~v(fi)(a) = 0.

The set of such vectors ~v is called the tangent space TaX.

Proof. The first 2 are equivalent since the map descends to k[x1, . . . , xn]/I if and only if I is
in the kernel.

2 implies 3 is immediate. Now, we show that 3 implies 2. let ∇~v(fi)(a) = 0 for a gener-
ating set {f1, f2, . . . , fm} of I. Using Leibniz rule, we simplify ∇~v(gh)(a) = g(a)∇~v(h)(a) +
h(a)∇~v(g)(a). If h = fi, then fi(a) = 0 as a ∈ Z(I) and ∇~v(fi)(a) = 0 by assump-
tion, implying that ∇~v(gfi)(a) = 0 for any g ∈ k[x1, . . . , xn]. If f ∈ I, we can write
f = g1f1 + g2f2 . . .+ gmfm; ∇~v(gifi)(a) = 0 along with linearity implies that ∇~v(f)(a). �

https://mathoverflow.net/questions/123486
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Let R be a commutative k-algebra and let M be an R-module. A derivation R → M
over k is a map D : R→M obeying

• D(c) = 0, for c ∈ k.
• D(f + g) = D(f) +D(g).
• D(fg) = fD(g) + gD(f), where we have used the R-module structure of M .

Lemma. Let R = k[x1, . . . , xn] and let M be any R-module. Then, for any m1, m2, . . . ,
mn ∈M , there is a unique derivation D : R→M with D(xi) = mi.

Proof. Using the last rule and linearity, we see that by specifying where xi maps to, D(f) is
uniquely determined. In particular, D(f) =

∑n
i=1

∂f
∂xi
D(xi), which satisfies the properties of

a derivation. �

Lemma. Let m be a maximal ideal of R. Show that every derivation R → R/m vanishes
on m2.

Proof. If r, s ∈ m, then D(rs) = rD(s) + sD(r) = 0 in R/m. Therefore, D vanishes on m2

as any element of m2 is of the form
∑t

i=1 risi, for ri, si ∈ m. �

Lemma. Let m be a maximal ideal of R. Suppose that the composition k → R → R/m is
an isomorprhism k ∼= R/m. Show that the space of derivations R → R/m is isomorphic to
Hom(m/m2, k).

The R/m vector space m/m2 is called the Zariski cotangent space of (R,m).

Proof. We are in the following setup:

0 m R R/m 0

k
Note that the above short exact sequence splits (as R/m ∼= k). Therefore, we can write

any element r ∈ R as a sum of an element in m and k.
Let Der(R,R/m) denote the vector space of derivations R 7→ R/m. We can restrict a

derivation D in Der(R,R/m) to m ⊂ R, and obtain a linear map, D|m from m to R/m ∼= k.

The previous lemma tells us that D|m vanishes on m2, hence D|m induces a linear map D̃

from m/m2 to k. We shall show that the map D 7→ D̃ is an isomorphism from Der(R,R/m)
to Hom(m/m2, k).

Suppose D is a nonzero derivation, i.e, D(r) 6= 0, for some r ∈ R. Then D(r) = D(m) +
D(λ) 6= 0 for elements m ∈ m and λ ∈ k. However D(λ) = 0 since λ ∈ k. Therefore,

D(m) 6= 0 due to which D̃(m) 6= 0, or D̃ 6≡ 0. To show surjectiviy, take an element f ∈
Hom(m/m2, k), this gives us a map from m to k (by composing with the map m→ m/m2).
Thus, we also obtain a map D from R to k (by composing with the map R → m, which
exists since the short exact sequence splits). This is easily checked to be a derivation such

that f = D̃. Therefore, Der(R,R/m) ∼= Hom(m/m2, k). �

The Zariski tangent space of (R,m) is defined to be Der(R,R/m) which we have just
shown is isomorphic to the dual of the Zariski cotangent space (when R/m ∼= k).

We see that the tangent/cotangent spaces of a variety X at a point x are both intrinsic
quantities, which can be described solely in terms of the coordinate ring of R and the maximal
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ideal mx. But they are also both very concrete quantities: If we embed X into An, with
ideal f1, . . . , fm, then the tangent space is the solution to the linear equations∑

vj
∂fi
∂xj

= 0 1 ≤ i ≤ m.

November 5: Tangent bundle, vector fields, and 1-forms. Today we define the tan-
gent bundle, but before we do so, we list out some properties of tangent and cotangent spaces
which should have been mentioned last time.

Tx is functorial: If we have a regular map f : X → Y , where X and Y are affine varieties
in An and Am respectively. Then we have a map f∗ : TxX → Tf(x)Y , given by the following
Jacobian.

f∗ =


∂f1
∂x1

· · · ∂f1
∂xn

...
. . .

...
∂fm
∂x1

· · · ∂fm
∂xn


Strictly speaking, this is a map from TxAn to Tf(x)Am. To get the map from TxX, we restrict
the map above to the subspace TxX.

We can also define this induced map more abstractly. Recall that elements of TxX are
k-linear derivations from O(X) to O(X)/mx. We can compose this with the induced map
from O(Y ) to O(X) to get a k-linear derivation from O(Y ) to O(X)/mx, which can be
canonically identified with O(Y )/mf(x), giving an element of Tf(x)Y .

Tangent space of fibers: Suppose now we have a regular map from Y to X. Pick a point
x ∈ X, and let Z = f−1(x) be a subvariety of Y . Pick a point y ∈ Z. The question is, what’s
the relation between TyY , TyZ, and TxX. Because X sits inside Y , we have the map from
TyZ to TyY induced by the inclusion map. We also have a map from TyY to TxX induced
by f . And if we compose the two maps, we get the map induced by the constant map from
Z to X, which must necessarily be 0.

TyZ
i∗−→ TyY

f∗−→ TxX

The composition f∗◦i∗ = 0, but TyZ is not necessarily equal to kernel of the map. Consider a
map f from A1 to A1 given by y 7→ y2, and look at the pre-image of 0. It’s just the singleton
point {0}. The tangent space of this point is a 0-dimensional space. On the other hand,
the induced map f∗ at T0A1 sends everything to 0, that means its kernel is 1-dimensional.
Next term, when we can talk about schemes, we will say that the scheme-theoretic fiber is
Spec of the non-reduced ring k[x, y]/〈x, y2〉 ∼= k[y]/(y2). The Zeriski tangent space to this
nonreduced ring is 1-dimensional, and is the kernel of the map on tangent spaces.

We now define the tangent bundle of an affine variety X when it’s embedded in An. Let I
be the ideal of polynomials in k[x1, . . . , xn] that vanish on X. This gives us a concrete way
of describing the tangent space of X at x, namely the set of all vectors v ∈ An such that∑

i vi
∂f
∂xi

for all f ∈ I. This also lets us build up the tangent space as a variety, which is a

collection (x, v), where x ∈ X, and v ∈ TxX.

Definition (Tangent bundle). The tangent bundle TX of an affine variety X ⊆ An is a
closed subset of A2n (where the first n coordinates are {x1, . . . , xn} and the last n coordinates
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are {v1, . . . , vn}) defined by the common zeroes of the following polynomials.

f(x1, x2, . . . , xn) ∀f ∈ I(X)∑
i

vi
∂f

∂xi
∀f ∈ I(X)

The tangent bundle comes with a map π to X, which is just projection onto the first n
coordinates, and the fibre of π over any x ∈ X turns out to be (x, v), where v ranges over
all elements of TxX.

A (regular) vector field is a regular section of the tangent bundle, i.e. a regular map s from
X to TX such that π◦s = id. Concretely, it’s given by (x1, . . . , xn) 7→ (x1, . . . , xn, φ1(x), . . . , φn(x)),
where φi are regular functions such that for all x, (φ1(x), . . . , φn(x)) ∈ TxX. Recall the con-
dition for a vector v to lie in TxX:

∑
i vi

∂f
∂xi

= 0 for all f ∈ I(X). That means a collection of

regular functions {φ1, . . . , φn} comes from a regular section iff
∑

i φi(x) ∂f
∂xi

is 0 everywhere

on X, or equivalently, lies in I(X) for all f ∈ I(X).
Just like how tangent vectors at x ∈ X were defined as k-linear derivations from O(X) to
O(X)/mx, we can define vector fields in terms of derivations, this time from O(X) to O(X).

More concretely, we have the following theorem.

Proposition. Let {φ1, . . . , φn} be regular functions on X. Then the following statements
are equivalent.

(1) For all x ∈ X, (φ1(x), . . . , φn(x)) is in TxX.
(2) There is a derivation D : A→ A with D(xi) = φi.

Proof. Define a derivation from k[x1, . . . , xn] to A by setting D(xi) = φi. It will only factor
through O(X) if for all f ∈ I(X), D(f) = 0. Since D(xi) = φi, D(f) =

∑
i φi(x) ∂f

∂xi
. If

(1) is true, then
∑

i φi(x) ∂f
∂xi

must be equal to 0, which means D(f) = 0, and the derivation

D factors through O(X). Conversely, if the derivation factors through O(X), that means
D(f) = 0 for all f ∈ I(X), and φ(x) is in the tangent space at all points X. This proves the
result. �

Now that we have defined vector fields, it’s natural to try to define 1-forms as well. One
way to define 1-forms is as regular maps from TX to k, such that they are linear on each
tangent space, i.e. a map ω such that ω(x, cv+w) = cω(x, v) +ω(x,w). To put it in näıvely
a 1-form is a way of regularly/holomorphically/smoothly assigning a number to each tangent
vector at each point.

A way to construct 1-forms is to take exterior derivatives of regular functions. The exterior
derivative df of a regular function f : X → k, is the differential form that takes the tangent
vector v to v(f) (recall that a tangent vector is a derivation).

There’s a related notion of Kähler differentials, which treats differential forms as purely
abstract objects in an O(X)-module generated by dxi, where xi’s are coordinate functions
on the ambient An, and the relations on the module are the relations generated by the rules
of the exterior derivative, namely linearity and the Leibnitz property, and that d(f) = 0 for
all f ∈ I(X). These clearly surject onto regular differential forms, but they usually don’t
inject into the space of regular differential forms. On the problem set, you will see that xdy
is a nonzero Kähler 1-form on X := {xy = 0} ⊂ A2, but vanishes at every point of TX.
We will eventually be able to show that, for a smooth variety, the Kähler 1-forms and the
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regular 1-forms coincide. In the world of smooth functions, other things can go wrong; see
the discussion at https://mathoverflow.net/a/6138/56183 .

The following question was asked after class: Is there a cotangent bundle, which 1-forms
(of either kind) are sections of? For singular X, no. Let X = {xy = 0} ⊂ A2. The 1-form dx
is 0 in T ∗( a, b)X for a = 0, b 6= 0, but not at (0, 0). If there were some hypothetical T ∗X → X
which dx was a section of, then it would have to vanish on a closed set. For X smooth, such
a cotangent bundle exists. As a sketch of the construction: Let X be smooth of dimension d.
We will soon be able to show that X has an open cover Ui such that TUi ∼= Ui×Ad. Then TUi
and TUj will glue by (x,~v) 7→ (x, gij(x)~v) for some regular function gij : Ui∩Uj → GLn. Then
T ∗X is formed by taking the varieties Ui × Ad and gluing the two copies of (Ui ∩ Uj) × Ad

to each other by (x,~v) 7→ (x, g−Tij (x)~v). If we were allowed to talk about gluing abstract
varieties, this would be a construction and, after working hard enough, we could deduce
that, if X is affine then so is T ∗X, using (for example) Proposition 7.3.4 in Vakil. But I
don’t see how to do this if I am not allowed to talk about the abstract object before I deduce
that it is affine. See the discussion at https://mathoverflow.net/questions/186396.

November 7: Gluing Vector Fields and 1-Forms. We start with an example from the
problem set. Take:

X = {y2 = x3 + x}, A = k[x, y]/〈y2 − x3 − x〉, Ω1
A =

〈dx, dy〉
2ydy − (3x2 + 1)dx

where that last is secretly the Kähler 1-forms. Since 2y and 3x2 + 1 have no common roots,
we can write X = U ∪ V , where U = {2y 6= 0}, and V = {3x2 + 1 6= 0}. On the intersection
U ∩ V we have dy

3x2+1
= dx

2y
. We checked that Ω1

A is a free A-module with some generator

ω. The idea is that we should do something like ω = dy
3x2+1

= dx
2y

, so that dy = (3x2 + 1)ω,

dx = 2yω. By the Nullstellensatz, we know there exist f and g such that 2yf+(3x2+1)g ≡ 1
mod 〈y2 − x3 − x〉. We define ω by fdx + gdy; conceptually, this formula is motivated by
ω = (2yf + (3x2 + 1)g)ω = fdx+ gdy since 2yω = dx and (3x2 + 1)ω = dy. So we can take
one formula for ω which is valid when 2y 6= 0 and another which is valid when 3x2 + 1 is
nonzero, and glue them together to a 1-form defined on the union of these two open sets.
We will want to repeat this construction generally.

Now lets look in more generality. If X is affine, U ⊂ X affine open, then we have

TX X

TU U

πX

πU

We observe that TU ∼= π−1
X (U).

We showed a while ago that the condition of a function being regular can be checked
locally. We deduce:

Theorem. If a function ω : TX → k is linear on each π−1(x), then it is regular if and only
if X has a cover {Ui} such that ω|Ui is regular, which holds if and only if it holds for all
covers.

In other words, regular 1-forms glue. There is a similar result for Kähler 1-forms.
Also, the condition of a map being regular can be checked locally. We deduce:

https://mathoverflow.net/a/6138/56183
https://mathoverflow.net/questions/186396
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Theorem. If we have a set theoretic section σ : X → TX it is regular if and only if there
exists an open cover Ui such that σ|Ui is regular for all i, which holds if and only if it holds
for all covers.

So regular vector fields glue.
We now use this to define regular vector fields and 1-forms on non-affine varieties.

Definition. Let X be a quasiprojective variety. A vector field on X is a choice of vector
ϕ(x) ∈ TxX for each x ∈ X such that ϕ restricts to a regular vector field on some (equiva-
lently: any) affine cover. A regular 1-form on X is a choice for each x ∈ X of a linear map
ωx : TxX → k which restricts to a regular 1-form on some (equivalently: any) affine cover.

Why equivalently any? For any pair of open covers {Ui}, {Vj} the intersections {Ui ∩ Vj}
form an affine cover. We can use this to transfer the condition from one cover to the other.

Example (Vector fields on P1). P1 has homogeneous coordinate ring k[z1, z2], so write
P1 = U1 ∪ U2 where Ui = {zi 6= 0}. The regular function rings for U1, U2 are k[ z2

z1
], k[ z1

z2
]

respectively. If we use Vakil’s notation of zi
zj

= xi/j, then on U1 ∩ U2, x1/2 = (x2/1)−1.

Vector fields on U1 look like p1(x2/1) ∂
∂x2/1

, p1 a polynomial. On U2, vector fields look like

p2(x1/2) ∂
∂x1/2

. On the intersection, how are these related? With intuition from differential

geometry, we try writing

∂

∂x1/2

=
∂

∂(x2/1)−1)
= −x2

2/1

∂

∂x2/1

.

If we don’t have that intuition, we can instead look at

∂

∂x1/2

: xn2/1 = x−n1/2 7→ (−n)x−n−1
1/2 = (−n)xn+1

2/1 = −x2
2/1

∂xn2/1
∂x2/1

and so our guess was correct! Therefore we can extend ∂
∂x1/2

to a global vector field, because

the ∂
∂x1/2

is regular on U2, and −x2
2/1

∂
∂x2/1

is regular on U1. If we draw it in C, we get the

following picture.
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Other global fields on P1 are

x2/1
∂

∂x2/1

= −x1/2
∂

∂x1/2

and
∂

∂x2/1

= −x2
1/2

∂

∂x1/2

which we’ll prove on the problem set is a basis for the k-vector space of regular global vector
fields on P1. .

Can we describe this using derivations k[z1, z2]→ k[z1, z2]? We’ll want them to be degree
preserving. If D : k[z1, z2]→ k[z1, z2] is a degree 0 (i.e. degree preserving) derivation and f is
a non-homogeneous polynomial, then D extends to f−1k[z1, z2] → f−1k[z1, z2] and restricts
to (f−1k[z1, z2])0 → (f−1k[z1, z2])0. This extended and restricted function will be a tangent
vector field to X \ Z(f). Such degree preserving derivations have as a basis

z1
∂

∂z1

, z2
∂

∂z1

, z1
∂

∂z2

, z2
∂

∂z2

but this map has a kernel: z1
∂
∂z1

+ z2
∂
∂z2
7→ 0. More generally, the vector space of degree

preserving derivations on k[x0, . . . , xn] has dimension (n + 1)2, with basis zj
∂
∂zi

; the vector

space of vector fields on Pn−1 is the surjective image of this but has dimension only (n+1)2−1,
as
∑

∂
∂zj

maps to 0.

In general, let X ⊂ Pn be a projective variety, and A the graded homogenous coordinate
ring. We get a map from degree preserving derivations A→ A to vector fields on X, but this
map need be neither injective nor surjective. There doesn’t seem to be a simple description
of vector fields on X using commutative algebra of A.

November 9 : Varieties are generically smooth. This class was devoted to the dimen-
sion of tangent space at generic points of a quasi-projective variety. Here were the main
results; let X be a quasiprojective variety:

Theorem. The function x 7→ dimTxX is upper semicontinuous, meaning that {x : dimTxX ≥
k} is closed.

For x ∈ X, let dx(X) be the maximum dimension of any component of X containing x.

Theorem. For all x ∈ X, we have dimTxX ≥ dx(X).

Theorem. Let X be irreducible of dimension d. There is a nonempty (and therefore dense)
subset U of X such that dimTxX = d for x ∈ U .

To prove the first theorem, note that the result is local on X, so we may assume that
X is affine, with X ⊂ An, and we have TX ⊂ An × An. Consider the variant PTX ⊂
An× Pn−1, consisting of pairs (x, [~v]) with ~v ∈ TxX. We have the projection π : PTX → X.
By the theorem on dimension of fibers, the dimension of the fibers of this map is upper
semicontinuous. These fibers are precisely the projectivizations of the tangent spaces to X.

We now prepare to prove the other two results, which are largely independent.

Proof that dimTxX ≥ dx(X). Our proof is by induction on dimTxX; the base case is actually
the most interesting.

Base Case: Suppose TxX = {0}. We must show that x is an isolated point. The
claim is local, so assume X is affine with coordinate ring A and m ⊂ A, the maximal ideal
corresponding to X. The hypothesis is that m/m2 = 0. By Nakayama lemma, ∃f ∈ A,
f ≡ 1 mod m such that f−1m = 0. So, passing to f−1A we have f−1m = 0. So, on D(f),



50 MATH 631 NOTES, FALL 2018

every function that vanishes at x is identically zero. So, there are no other points in D(f)
and x is isolated.

Inductive Case: Let dimTxX = dimT ∗xX > 0. Choose some g ∈ mX − m2
X . Consider

X ′ = X ∩ Z(g). So, dimT ∗xX
′ ≤ dimTxX − 1. By the Krull’s Principal Ideal Theorem, we

have dx(X
′) ≥ dx(X)−1. Inductively, we have dimTxX−1 ≥ dimTxX

′ ≥ dx(X
′) ≥ dx(X)−1

and thus dimTxX ≥ dxX. �

Finally, we show that dimTxX is generically dimX. The following key lemma is basically
implicit differentiation:

Lemma. Let Y = MaxSpec(B) → X = MaxSpec(A) be a map of varieties. Suppose B
is generated as an A-algebra by θ ∈ B satisfying a(θ) = 0 and suppose a′(θ) is a unit in
B. Then, for all y ∈ Y , f∗ : TyY → Tf(y)X is injective and dually, f ∗ : T ∗f(x)X → T ∗y Y is
surjective.

To be clear, writing a(t) =
∑
ajt

j, by a′(t) we mean
∑
jajt

j−1.

Proof. We’ll check surjectivity in the dual spaces. Since B is generated by A and θ, TyY is
spanned by {da}a∈A and dθ.

From the equation
∑n

j=0 ajθ
j = 0 we deduce

∑
(θjdaj+jajθ

j−1dθ) = 0. So
∑
jajθ

j−1dθ =

−
∑
θjdaj and dθ =

∑
ajθ

j−1dθ

a′(θ)
. Therefore, dθ is in the B − span of {da}a∈A. So, [da]a∈A

span T ∗y Y and the map is surjective. �

Example. Let MaxSpec(k[x]) = X and MaxSpec(k[y]) = Y and consider the map y 7→ y2

from Y → X. This corresponds to the inclusion A = k[y2] ⊂ k[y] = B. Then, B = A[y] and
a(T ) = T 2 − y2 and a′(T ) = 2T . Therefore, a′(y) is not a unit in B. As seen in a previous
class, the map of tangent spaces is zero at the point 0 ∈ Y , hence, is not injective. If we
modify A′ = X−1A and B′ = Y −1B, then a′(y) will be a unit and corresponds to the map
of tangent spaces being injective.

We now need to appeal to

Theorem. (A strengthening of Noether normalization) If X is an irreducible d dimen-
sional affine variety, then there is a finite surjective mapX → Ad such that Frac(X)/Frac(Ad)
is separable.

Theorem. Let X be a d-dimensional irreducible quasi-projective variety. Then, there is a
dense open subset U ⊂ X such that dimTuU ≤ d for u ∈ U .

Proof. We may assume X is affine. Let X = MaxSpec(B). Choose a separable Noether
Normalization X → Ad, let A be the coordinate ring of Ad. Let B be generated by θ1, . . . , θt
over A. Consider the nested sequence C0 = A ⊂ C1 = A[θ1] ⊂ · · · ⊂ Ct = A[θ1, . . . , θt] = B.
So, Cj+1 is generated over Cj by θj+1. Let θj+1 satisfy a polynomial aj+1(T ) over Cj. All
a′(θj+1) are non-zero in the domain B. By inverting them all (localizing at the product of
all the aj’s), we have an open subset U ⊂ X. For u ∈ U , f∗ : TuY → Tf(u)X is a composition
of the injective maps TuY → TuU and TuU → Tf(u)X. Therefore, is injective. Hence,
dimTuY ≤ d . �

November 12: Smoothness and Sard’s Theorem. Recall from last time the following
fact:

Theorem. If X is irreducible of dimension d, then
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(1) For any x ∈ X, dimTxX ≥ d.
(2) There exists a non-empty open subset U ⊆ X such that dimTxX = d for all x ∈ U .
(3) dimTxX is an upper semi-continuous function of X, meaning

{x ∈ X | dimTxX ≥ k}
is closed for all k ≥ 0.

The idea of the proof of (2) is to choose a Noether normalization π : X → Ad such that
FracX/FracAd is separable. This ends up giving us an open subset U ⊆ X such that the
induced map f∗ : TxX → Tπ(x)Ad ∼= Ad is an isomorphism for each x ∈ U .

These facts tell us that the singularities on varieties are relatively controlled, in that no
“fractal” behavior can occur. We now define smoothness:

Definition. An algebraic variety X is smooth (or regular , or non-singular) if for all
x ∈ X,

dimTxX = max
Y 3x

dimY

where this max is taken over all irreducible components Y of X containing the point x.

Note that when X is irreducible of dimension d, this definition reduces to the condition
that dimTxX = d for every point x ∈ X. We also note that the notions of ”smooth” and
“non-singular” coincide in all contexts in which they are both defined, but the notion of
“regular” is slightly more general, and slightly weaker.

The following wasn’t actually said until a lot later, but belongs here:

Proposition. Let X be smooth of dimension n at x. Suppose that f1, f2, . . . , fk are
functions vanishing at x and that df1, df2, . . . , dfk are linearly independent in T ∗xX. Then
Z(f1, . . . , fk) is smooth at x of dimension n− k.

Proof. Put Y = Z(f1, . . . , fk). By Krull’s Principal Ideal Theorem, dimY ≥ n− k. On the
other hand, T ∗xY is a quotient of T ∗xX under which df1, . . . , dfk map to 0, so dimT ∗xY ≤ n−k.
And we know that dimT ∗xY ≥ dimY . Concatenating these, dimY = dimT ∗xY = n − k.
Furthermore, fk+1, . . . , fn give a basis of T ∗xY . �

Example. Let C = {x3 + y3 = 1} ⊂ A2. The the projection π : C → A1 of C onto the
x-axis induces an isomorphism T(x,y)C ∼= TxA1(∼= A1) for every (x, y) ∈ C not equal to
(1, 0). Similarly, the projection π : C → A1 of C onto the y-axis induces an isomorphism
T(x,y)C ∼= TyA1 for every (x, y) ∈ C not equal to (0, 1).

The following example exhibits how induced maps on tangent bundles can behave patho-
logically in positive characteristic:

Example. Let chark = p. Then the map A1 → A1 given by t 7→ tp has derivative zero at
every point in A1.

Lets return to characteristic 0, and let X be smooth with a Noether normalization π :
X → Ad as above. Let U ⊆ X be such that U → Ad induces isomorphisms on each tangent
space. Then TU ∼= U × Ad, the trivial d-plane bundle on U , which illustrates the fact that
TX is locally free when X is smooth. Given f : X → Y , this fact allows us to explicitly
compute the derivative map f∗ : TX → TY . To do so, we choose U ⊆ X and V ⊆ Y
such that the restrictions U → An and V → Am of the Noether normalizations of X and Y
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induce isomorphisms on tangent spaces at each point. Then in the coordinates Am,An, the
derivative map is just given by the m× n matrix of partial derivatives of f .

Proposition. Let X and Y be smooth of dimension m and n, respectively. Let f : Y → X
be a regular map. Then the rank of f∗ is a lower semi-continuous function on Y , in that

{y ∈ Y | rank(f∗ : TyY → Tf(y)X) ≤ k}

is closed in Y for all k ≥ 0.

To prove this, we need the following lemma:

Lemma. For any k ≥ 0, the subset

{M ∈ Matm×n | rank(M) ≤ k} ⊂ Matm×n ∼= Amn

is Zariski closed.

Proof. Consider K := {(M, [~v]) | M~v = 0} ⊆ Matm×n × Pn−1. Then we can consider the
projection π : K → Matm×n. Noting that

rank(M) ≤ k ⇔ dim π−1(M) ≥ n− k − 1

it follows by upper semi-continuity of the dimension of fibers that

{M ∈ Matm×n | rank(M) ≤ k}

is closed. �

We now give a proof of the proposition:

Proof. Since the assertion is local on X and Y , we can assume TX ∼= X × Am and TY ∼=
Y × An. The induced map f∗ : TY → TX is then given by

TY
f∗−→ TX

(y,~v) 7→ (f(y), D(y)~v)

where D : Y → Matm×n is regular. Then by the lemma, the collection of all rank
≤ k matrices in D(Y ) is a closed subset of D(Y ), hence its D-preimage, which is exactly
{y ∈ Y | rank(f∗ : TyY → Tf(y)X) ≤ k}, is closed in Y . �

We now state the algebraic analogue of Sard’s theorem:

Theorem (Bertini). Let chark = 0. Let X and Y be irreducible of dimensions m and n,
and let f : Y → X be a regular map. Then there exists an open subset U ⊆ X such that
for any x ∈ U , either f−1(x) = ∅ or f−1(x) is smooth of dimension n−m.

Note that this theorem trivial holds when m > n. We follow the statement of this theorem
with two examples that illustrate why the assumption that chark = 0 is necessary. The first
is a “moral” counterexample, which becomes a real counterexample when one takes a scheme-
theoretic perspective, and the second is a true counterexample from our naive perspective.
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Example. Let chark = p, and consider the map A1 → A1 given by t 7→ tp. Then the
(scheme-theoretic) preimage of a ∈ A1 is

f−1(a) = Z(tp − a) = Z((t− a1/p)p)

which is not reduced. However from our naive perspective, the preimage of a is just a
single point, which is a smooth variety of dimension 1 − 1 = 0, so the conclusion of the
theorem holds in this case.

Example. Let chark = p an odd prime, and consider the map A2 → A1 given by (x, y) 7→
y2 − xp. Then the preimage of a ∈ A1 is given by

f−1(a) = {y2 − xp = a}
= {y2 = (x+ a1/p)p}

which is singular at (x, y) = (−a1/p, 0), so the conclusion of the theorem does not hold.

Corollary (Bertini). Let X ⊆ Pn be smooth of dimension d. Then for a generic (projective)
hyperplane H ⊂ Pn, X ∩H is smooth of dimension d− 1.

Proof. Let (Pn)∨ be the dual projective space parametrizing hyperplanes in Pn. Consider
the closed set

E := {(x, [H]) : x ∈ X, x ∈ H} ⊂ X × (Pn)∨.

The projection E → X is a Pn−1-bundle, so E is smooth of dimension d+n− 1. Next, we
consider the projection E → (Pn)∨. By Sard’s theorem, the fiber over a generic [H] ∈ (Pn)∨

is smooth of dimension (d+ n− 1)− n = d− 1, which proves the result. �

In fact, we have a stronger result:

Theorem (Kleiman - Bertini). Let G be an algebraic group acting transitively on a smooth
variety Z of dimension n. Let X and Y be smooth subvarieties of dimensions d and e.
Let chark = 0. Then for generic g ∈ G, X ∩ gY is either empty or smooth of dimension
(d+ e− n).

November 14: Proof of Sard’s theorem.

Theorem (“Sard’s Theorem”). Let char(k) = 0. Let X, Y be quasi-projective varieties,
and f : Y → X a regular map. Then there exists a dense, open subset U ⊆ X so that
f∗ : TyY → Tf(y)X is surjective for all y ∈ U .
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Remark. If dim(Y ) < dim(X), this is obvious: we can choose an open set away from the
image of f , like in the example to the right.

Proof. We proceed by induction on dimY , but first we make some preliminary reductions:

(1) First, we can reduce to the case when Y is irreducible. If Y =
⋃
j Yj is the

irreducible decomposition of Y , and Uj is a dense open in each Yi satisfying the
criteria of the theorem, then we can take U =

⋂
j Uj.

(2) Next, we can reduce to the case where X = f(Y ). If we can find V ⊆ f(Y ) which

satisfies the criteria of the theorem, then we can take U = V ∪ (X \ f(Y )).

(3) We can assume that X is affine since the question is local on X.
(4) If Y =

⋃
j Yj is a covering of Y by open affines Yj, and we find a Uj satisfying the

criteria of the theorem for Yj → X, then U =
⋂
j Uj satisfies the criteria for Y → X.

Therefore, we can assume Y is affine.

To summarize the reductions: without loss of generality, we may assume that X, Y are
irreducible affines and f is dominant (i.e. has dense image). Now let n := dim(Y ), m :=
dim(X). Since X, Y are irreducible and f is dominant, n > m.

By relative Nöther normalization, we can pass to a dense open subset of X so that the
map factors as:

X × An−m

Y X

gfinite

f

Note that g is separable since char(k) = 0, so there’s a closed K ( Y so that

g∗ : TyY → Tg(y)(X × An−m)

is an isomorphism for all y ∈ Y \K. Namely,

K = {g is not injective} ∪ {y ∈ Y | Y is singular at y} ∪ f−1({x ∈ X | X is singular at x})

If y /∈ K, then g∗ : TyY
∼=−→ Tg(y)(X×An−m) is an isomorphism and Tg(y)(X×An−m)� Tf(y)X

is a surjection, so f∗ : TyY → Tf(y)X is a surjection as well.
Now dim(K) < n = dim(Y ), so by the inductive hypothesis, we can find a U ⊆ X that

works for K. We claim that this U also works for Y . To see this, let y ∈ Y so that f(y) ∈ U .
If y /∈ K, then we’re done. Otherwise, y ∈ K, so the composition

TyK ↪→ TyY
f∗−→ Tf(y)X

is a surjection, so f∗ is a surjection as well. �
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g
finite

f

Remark. The following example shows what can go wrong if char(k) = p.
Along the red line, g∗ is not an isomorphism, but g∗ is an isomorphism on the rest of Y ,

so we can take our dense open V ⊆ Y to be the complement of the red line. But g(V ) = X,
so V doesn’t translate to a dense open of X.

We also worked through an example that used the inductive step:

(x
2 −y

2 ,y
)

finite

x2−y2

We see that g is singular along the red line, so we take K1 to be the red line. In the next
step, we pick K2 to just be a point. Then we can take U = X \ f(K).

y 7→y2

Proposition. Let Y be smooth of pure dimension n, X smooth of pure dimension m, f :
Y → X regular. If f∗ : TyY → Tf(y)X is surjective, then f−1(f(y)) is smooth at y and of
dimension n−m.

Proof. Let F := f−1(f(y)) and x = f(y). By the (first) theorem on the dimension of fibers,

dimF ≥ n −m. Also, TyF ⊆ ker(Ty
f∗−→ TxX), so dimTyF ≤ n −m. Together, these two

facts imply

n−m ≤ dimF ≤ dimTyF ≤ n−m =⇒ dimF = dimTyF = n−m
�
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Corollary. If char(k) = 0, Y is smooth of dimension n, X is smooth of dimension m and
f : Y → X is regular, then there exists a dense open subset U ⊆ X so that f−1(x) is smooth
and of dimension n−m for every x ∈ U .

Conclusion: If char(k) = 0, Y is smooth of dimension n, X is smooth of dimension m,
and f : Y → X is regular, then there exists a dense open subset U ⊆ X so that f−1(x) is
smooth and of dimension n−m for all x ∈ U .

At the end of class, Professor Speyer made a remark about choosing a Noether normal-
ization:

Remark. Let dimX = d and x ∈ X. Someone asked: can we choose a Noether normaliza-
tion f : X → Ad so that f∗ : TxX → Tf(x)Ad is an isomorphism?

Clearly, we need x to be smooth, or else the dimensions will not match. And, if x is
smooth, we can indeed find such a Noether normalization!

The map π is given by a generic linear map (i.e. a d × n matrix). We showed that a
generic such π will give a Noether normalization. It will also be true, for generic π, that
TxX ↪→ An π−→ Ad will be an isomorphism. So a generic π will have both such properties.

November 16: Completion and regularity. Today we discussed completion and regu-
larity in commutative algebra.

Definition (I-adic completion). Let A be a commutative ring. I ⊂ A is an ideal. The
I-adic completion of A is defined as

Â = lim
←n

A/In,

where
lim
←n

A/In = {(a1, a2, a3, ...)|aj ∈ A/Ij, aj+1 ≡ aj mod Ij}.

Example. An example element in lim←nQ[x]/(xn) would be(
1, 1 + x, 1 + x+

1

2
x2, 1 + x+

1

2
x2 +

1

6
x3, ...

)
.

This is a ring where 1 + x+ 1
2
x2 + 1

6
x3 + ... make sense.

Example. Assuming A is Noetherian, there exists an M ∈ Z+ such that
√
I
M
⊂ I ⊂

√
I.

Therefore I-adic and
√
I-adic completions are isomorphic.

Example. k[x1, ..., xn] completed at 〈x1, ..xn〉 is k[[x1, ..., xn]], the ring of power series.

Lemma. Let A be a Noetherian commutative ring and m be a maximal ideal. Then there
exists a f ≡ 1 mod m such that the map f−1A → Â is injective, where Â is the m-adic
completion.

Remark. Geometrically, if X is an variety and x ∈ X, there exists a Zariski distinguished
open neighborhood U of x such that OU → ÔX is injective.

Proof. The natural map A→ Â which sends a to (a, a, a, ...) has kernel
∞⋂
j=1

mj =: J.
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Since J is an ideal of A, it is a finitely generated A-module. Note that mJ = J , by
Nakayama’s lemma, there exists a f ≡ 1 mod m such that f−1J = 0. Note that f−1A→ Â
has kernel f−1J , hence this map is injective. �

Corollary. If X is irreducible, then OX → ÔX is injective.

Remark. This is analogous to the “principle of analytic continuation”: A regular function
(on an irreducible variety) is determined by its power series at any point.

Staying in commutative algebra, let A be a Noetherian commutative ring. m be a maximal
ideal. F := A/m is a field and V := m/m2 is a F -vector space. Then we have a natural
map:

SymdV → md/md+1.

Lemma. The above map is surjective.

Proof. Let {v1, ..., vn} be a F -basis of V . We lift them to {w1, ..., wn} ⊂ m. By Nakayama’s
lemma, after localizing we have {w1, ..., wn} generatesm as aA-module. Therefore {wk11 ...w

kn
n |k1+

... + kn = d} generates md as an A-module. Therefore {vk11 ...v
kn
n |k1 + ... + kn = d} spans

md/md+1. �

Definition (Regularity). Let A be a Noetherian ring and m is a maximal ideal of A. A is
regular at m if the map

SymdV → md/md+1

is an isomorphism for all d.

This definition is particularly nice if A is a k-algebra such that

k → A→ A/m = F

is an isomorphism. In this case we can choose {v1, ..., vn} as before and lift it to {w1, ..., wn} ∈
A. Then we get a map k[x1, ..., xn]→ A such that xj → wj.

Proposition. In the above case, regularity is equivalent to

k[x1, ..., xn]/〈x1, ..., xn〉d → A/md(1)

is isomorphism for all d.

Proof. LHS of (1) is filtered by 〈x1, ..., xn〉j/〈x1, ..., xn〉d and RHS of (1) is filtered by mj/md.
Therefore (1) is an isomorphism if and only if each

〈x1, ..., xn〉j/〈x1, ..., xn〉j+1 → mj/mj+1

is an isomorphism. �

Remark. In this setting, A is regular at m is equivalent to

Â ∼= k[[x1, ..., xn]].

Theorem. Let X be an affine variety, x ∈ X. The ring of regular functions OX is regular
at mx if and only if dimTxX is equal to the dimension near x.
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Proof. This proof was skipped in class. We abbreviate OX to A and the maximal ideal of A
corresponding to x to m.

Suppose that A is regular. We always have d1 := dimTxX ≥ dimX =: d2. Choose a
Noether normalization π : X → Ad2 , corresponding to R ⊂ A. Let n be the maximal ideal of
R corresponding to π(x). So we have a surjection R⊕r → A for some r and, since nR ⊆ m,
we obtain a surjection (R/nN)⊕r → A/mN . So dimA/mN ≤ r dimR/nN . The right hand
side is a polynomial in N of degree dimR = d2. If A is regular, then the left hand side is a
polynomial of degree d1 in N , so d1 ≤ d2.

In the reverse direction, this theorem appears as Theorem 4 in Section II.2.2 of Shavarevich.
Suppose that dimT ∗xX = dimX = d. Choose f1, . . . , fd mapping to a basis of T ∗xX. We

know that we have a surjection k[[t1, . . . , td]] → Â, we need to show that it is injective.
In other words, given any nonzero degree k polynomial g(t1, . . . , tk), we must show that
g(f1, . . . , fd) 6∈ mk+1. Suppose otherwise. After a change of coordinates, we may assume that
the coefficient of tkd in g is nonzero. Let C = Z(f1, . . . , fd−1), so C is smooth of dimension
1, with fd mapping to a basis of the one dimensional vector space T ∗xC. So, writing mC

for the maximal ideal of x in C and passing to an open neighborhood, we have mC = (fd)
Restricting the equation g(f1, . . . , fd) 6∈ mk+1 to C, we get that fkd ∈ mk+1

C on C. But that
shows that fk+1

d |fkd on C, a contradiction. �

Corollary. If X is smooth at x, then X has an irreducible Zariski open neighborhood.

Proof. Since the result is local, we can assume X is affine. There exists a neighborhood U
of x such that the map OU → ÔX ∼= k[[x1, ..., xn]] is injective, hence OU is a domain, which
implies U is irreducible. �

Finally, we extend the result which should have been stated on November 12: Let X be
smooth of dimension n at x. Suppose that f1, f2, . . . , fk are functions vanishing at x and
that df1, df2, . . . , dfk are linearly independent in T ∗xX. We noted before that Z(f1, . . . , fk)
is smooth at x of dimension n− k. We now show that,

Proposition. After passing to an open neighborhood of x, the functions f1,. . . , fk will
generate the reduced ideal of Y .

Proof. Let A be the ring of regular functions on a neighborhood of x. We must show that,
after passing to a possible smaller neighborhood of x, the ring A/〈f1, . . . , fk〉 is reduced.
We know that, after passing to such an open neighborhood, it injects into the completion
Â/〈f1, . . . , fk〉. But this is simply k[[f1, . . . , fd]]/〈f1, . . . , fk〉 ∼= k[[f1, . . . , fd]], which is re-
duced. �

November 19: Divisors and valuations. Let X be an ambient (quasiprojective) variety,
which we will assume to be irreducible.

Definition. A divisor of X is an irreducible subvariety D ⊂ X of codimension 1.

Our goal for today is to define, for a rational function f ∈ K(X), its “order of vanishing”
along a divisor D ⊂ X. The intuition here is that D, being codimension 1, should be locally
a hypersurface, i.e. after passing to an open subset U ⊂ X, we should have Y ∩ U = Z(g)
for some g ∈ O(U). We can then ask, very roughly speaking: given an arbitrary rational
function f ∈ K(X), what is the “largest power of g dividing f”? That we can really make
sense of this productively and in a way that does not depend on the choice of open set U is
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today’s work. First, we show that indeed divisors are locally hypersurfaces; in fact, we show
something more general.

Proposition. Let Y ⊂ X be a subvariety. Suppose that at a point z ∈ Y , we have X
is smooth of dimension m, and Y is smooth of dimension n. Then, there exists an open
neighborhood z ∈ U ⊂ X such that I(Y ∩U) ⊂ O(U) is generated by m−n regular functions.

The catchy mnemonic version of the above result is “smooth inside smooth is a locally
complete intersection.”

Proof. The statement is local, so we may as well assume X and Y are affine with X =
MaxSpec(A) and Y = MaxSpec(B). Setting I := I(Y ) ⊂ A, we have an exact sequence

0→ I → A→ B → 0

of A-modules. Let mA ⊂ A and mB ⊂ B be the maximal ideals in A and B corresponding
to the point z (i.e. regular functions vanishing at z). The above exact sequence restricts to
an exact sequence

0→ I → mA → mB → 0

and then, tensoring with the A-module A/mA, we obtain a right exact sequence

I/mAI → mA/m
2
A → mB/m

2
B → 0

The inclusion Y ↪→ X induces a map T ∗X → T ∗Y of cotangent spaces and, by exactness of the
sequence above, it follows that the inclusion I ↪→ A is a surjection onto Ker(T ∗X → T ∗Y ).

Choose f1, · · · , fm−n in I mapping onto a basis of Ker(T ∗X → T ∗Y ), and let

Y ′ := Z(f1, · · · , fm−n) ⊂ X

Then Y ⊂ Y ′ and Y ′ is smooth near z (of dimension n). Let U ⊂ X be an open subset
such that U ∩ Y ′ is irreducible (take e.g. U to be the complement of all the irreducible
components of Y ′ not containing z). Since U ∩ Y ′ ⊃ U ∩ Y and both are irreducible of the
same dimension, it follows that U ∩ Y ′ = U ∩ Y . Hence I(Y ∩ U) ⊂ O(U) is precisely

I(Y ′ ∩ U) =
√
〈f1, · · · , fm−n〉 = 〈f1, · · · , fm−n〉

where the latter equality follows from the fact that f1, · · · , fm−n form a system of parameters
for the local ring OY,z. �

In particular, if D ⊂ X is a divisor and z ∈ D is a smooth point of both D and X, then D
is locally a hypersurface near z. (In fact, something stronger holds: the same result is true
if z is only a smooth point of X, and not necessarily a smooth point of D.)

Definition. Let D be a principal divisor of an irreducible affine open set U ⊂ X, i.e.
I(D) = 〈f〉 ⊂ O(U) for some f ∈ O(U). If g ∈ O(U), we define its order along D as

vD,U(g) = max{n : g ∈ I(D)n}

That this maximum is well-defined follows from Proposition A.12 in Shafarevich. In the
setting of the definition above, if vD,U(g) = n, then g = fnu for some u 6∈ I(D), i.e. u|D
is nonzero. If we restrict to any smaller irreducible affine U ′ ⊂ U with U ′ ∩ D 6= ∅, then
u|D∩U ′ is still nonzero, so vD(g) stays the same. It follows that if we compute vD(g) using an
open affine irreducible U ⊂ X and a different open affine irreducible V ⊂ X, then we obtain
the same result by passage U ←↩ U ∩ V ↪→ V . Accordingly, we can refine the definition as
follows:
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Definition. Let D be a divisor of X such that there exists some irreducible affine open
U ⊂ X in which D is a hypersurface. Then for any regular function g ∈ O(V ) for some
open V ⊂ X, we can define the order along D by vD,U∩V (g). The above argument shows
this does not depend on U , so we can just write vD(g).

It is relatively straightforward to check that the valuation vD satisfies the properties:

vD(g1g2) = vD(g1) + vD(g2)

vD(g1 + g2) ≥ min(vD(g1), vD(g2))

Accordingly, vD can be extended to Frac(X)∗ via vD : Frac(X)∗ → Z given by

vD(g/h) := vD(g)− vD(h).

Notice that if dim(Sing(X)) ≤ dim(X) − 2, then any D ⊂ X satisfies the condition that
it is locally a hypersurface in some open neighborhood: just choose z 6∈ Sing(X) ∪ Sing(D)
(possible by dimension), then apply the proposition above to obtain a neighborhood of z in
which D is principal.

With this machinery, we can now talk about ramification indices. Suppose π : Y → X
is a finite surjection; assume X and Y are smooth in codimension ≥ 1. Let E ⊂ Y be a
divisor. Then, since π is closed, D := π(E) will be a divisor in X. We have valuations
vE : Frac(Y )→ Z and vD : Frac(X)→ Z.

Definition. The ramification index of π at E is the positive integer r such that vE(π?f) =
rvD(f).

To justify that such an r exists: pass to an open neighborhood on which D and E are
principal. Let gD be the local equation for D, and define r := vE(π?gD). For any f ∈
Frac(X), write f = gkDu where k = vD(f) and u|D 6= 0. Then π?(f) = π?(gD)kπ?(u), hence

vE(π?f) = kvE(π?gD) = rvD(f)

as desired.

November 21: The Algebraic Hartog’s theorem. We recall from last time: When X
is an irreducible variety, D ⊂ X closed, irreducible of codimension 1 and is locally principal
somewhere, we can define vD : (FracX)∗ → Z. By convention, vD(0) =∞. Here is something
we probably should have said last time:

Proposition. For r ∈ (FracX)∗ there are only finitely many D for which vD(r) 6= 0.

Proof. After removing finitely many divisors D from X, we may assume X is affine, with
ring of regular functions A. So r can be written as p/q for p and q ∈ A. Each of the varieties
Z(p) and Z(q) has finitely many irreducible components. After removing them, vD(r) = 0
for all D that remain. �

For f ∈ FracX, x ∈ X, we would like the following to hold: f is regular at x⇐⇒ vD(f) ≥
0 for all D containing x.

Theorem. Let X be smooth and irreducible of dimension n. Let r ∈ FracX have vD(r) ≥ 0
for all divisor D, then r is regular on X.

Corollary. If x ∈ X and vD(r) ≥ 0 for all D containing x, then r is regular at x.

Corollary. If U ⊂ X is open, vD(r) ≥ 0 for D satisfying D ∩ U 6= ∅, then r is regular on
U .
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Proof. (of theorem) Let K ⊂ X be the set of x where r is not regular, so K is closed in X.
We want to show K = ∅. If not, let Y be an irreducible component of K with dimY = n−k.
I’ll show that r is regular somewhere in Y , which gives a contradiction.

Case I: dimY = n− 1. Pass to an affine open U where Y is principal and nonempty, say
I(Y ) = (f1). Write r = p

q
, p, q ∈ OU . p = fa1 u, q = f b1v, a, b non-negative integers. u, v

restricted to Y are not identically 0. Then vD(r) = a− b ≥ 0 by assumption. r =
fa−b1 u

v
, so

r extends to Y ∩ {v 6= 0}.
Case II: dimY = n − k ≥ n − 2. Pass to an affine open U where K ∩ U = Y ∩ U ,

Y is smooth and I(Y ) = (f1, · · · , fk). At some point z ∈ Y , complete f1, · · · , fk to a
list f1, · · · , fk, g1, · · · , gn−k generating T ∗zX. Hence O(U) ↪→ k[[f1, · · · , fk, g1, · · · , gn−k]],
so FracO(U) ↪→ Frac k[[f1, · · · , fk, g1, · · · , gn−k]]. r is regular on U − Y , thus is regular
on U − Z(f1), so r ∈ f−1

1 O(U) ↪→ f−1
1 k[[f1, · · · , fk, g1, · · · , gn−k]]. r is also in f−1

2 O(U) ↪→
f−1

2 k[[f1, · · · , fk, g1, · · · , gn−k]], so r ∈ f−1
1 k[[f1, · · · , fk, g1, · · · , gn−k]]∩f−1

2 k[[f1, · · · , fk, g1, · · · , gn−k]] =
k[[f1, · · · , fk, g1, · · · , gn−k]]. We need the following:

Lemma. Let A be a noetherian commutative domain, m a maximal ideal, so A ↪→ Â and
hence FracA ↪→ Frac Â. If r ∈ (FracA) ∩ Â, then r is in some localization of A. More

carefully, let p, q ∈ A, q 6= 0. If q | p in Â then q | p in some localization of A.

Proof. Explicitly, q | p in Â means q | p in A/mN for all N , so p = 0 in A/(q+mN). Putting

B = A/q, then p = 0 in B/mN
B for all N =⇒ p = 0 in B̂. After localizing, B ↪→ B̂, so

p = 0 in B and q | p. �

�

We showed that smoothness implies

(1) codimension 1 primes are locally principal and
(2) functions regular in codimension 2 entend

A difficult theorem of Serre shows that, in fact, these two conditions are precisely equivalent
to X being normal. Most of what we do with divisors works on normal varieties.

We can think of condition (1) as analogous to Riemann’s Extension Theorem in analysis:
A function holomorphic on the complement of a divisor and bounded as we approach that
divisor extends holomorphically across the divisor. We can think of condition (2) as an
analog of Hartog’s theorem: A function holomorphic on the complement on a codimension 2
subvariety (or many other things, such as a compact subset of C2) extends holomorphically
to that subvariety.

November 26: Class groups. Recall the setup from last class: let X be a smooth, irre-
ducible variety. For D an irreducible codimension 1 subvariety of X, we defined a valuation
vD : Frac(X)∗ → Z and showed that for U ⊂ X open and f ∈ Frac(X),

f regular on U ⇐⇒ vD(f) ≥ 0 for all D with D ∩ U 6= ∅.

Moreover,

f is a unit of OU ⇐⇒ vD(f) = 0 for all D with D ∩ U 6= ∅.

Definition. Let X be as above. The divisor group Div(X) is the free abelian group on
irreducible codimension 1 subvarieties of X. An element of Div(X) is called a divisor.
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Note that we have a map

Frac(X)∗ → Div(X), f 7→ (f) :=
∑
D

vD(f)D

where there are finitely many nonzero terms in the sum.

Example. Recall that

Frac(P1) = Frac({y 6= 0}) = Frac(MaxSpec(k[x/y])) = k(t)

where t = x/y. Consider the rational function

f =
(t− 1)(t− 2)3

t2
∈ Frac(P1).

Note that f has zeros at t = 1 (i.e., [1 : 1]) of order 1 and t = 2 (i.e., [2 : 1]) of order 3, as
well as a pole of order 2 at t = 0 (i.e., [0 : 1]). There is also a pole of order 2 at t =∞ (i.e.,
[1 : 0]) since letting t = w−1,

f(w−1) =
(w−1 − 1)(w−1 − 2)3

w−2
=

(1− w)(1− 2w)3

w2

has a pole of order 2 at w = 0 (corresponding to t =∞). Thus,

(f) = (1) + 3(2)− 2(0)− 2(∞).

Let’s take a closer look at our map Frac(X)∗ → Div(X) via the following sequence:

O∗X → Frac(X)∗ → PrincDiv(X)→ Div(X)→ C`(X)

Here O∗X is the kernel of Frac(X)∗ → Div(X), while PrincDiv(X) (consisting of principal
divisors) is defined as the image and

C`(X) = Div(X)/PrincDiv(X),

called the divisor class group, is defined as the cokernel.

Remark. If X is smooth, then every codimension 1 ideal is locally principal. If X is normal,
then

PrincDiv(X) ⊂ Cartier(X) ⊂ Div(X)

where Cartier(X) consists of the locally principal divisors, and the Picard group is given by

Pic(X) = Cartier(X)/PrincDiv(X).
Example (Examples of C`(X)).

• Suppose A is a UFD and X = MaxSpec(A). Then every codimension 1 prime ideal
I is principal since if f ∈ I is nonzero and π is an irreducible factor of f , then π ∈ I
and

Z(π) irreducible, Z(I) ⊂ Z(π) ( X =⇒ Z(I) = Z(π) =⇒ I = (π).

Every divisor
∑

α cαZ(fα) is principal, coming from
∏

α f
cα
α , and so C`(X) = (0).

• Let X = P1. For any a, b ∈ P1, (a) − (b) is a principal divisor arising from t−a
t−b . For

every c ∈ P1, we have (c) = [(c) − (∞)] + (∞) so C`(X) is generated by (∞). The
map

f : Z→ C`(P1), n 7→ n(∞)

is surjective and is also injective since every rational function has the same number
of zeros and poles, implying n(∞) /∈ PrincDiv(X) for n 6= 0. Therefore, C`(P1) ∼= Z.
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• LetX = Pn with homogeneous coordinates x0, . . . , xn. If f(x0, . . . , xn) ∈ k[x0, . . . , xn]d,

then f(x0,...,xn)

xd0
is a rational function with divisor (f = 0) − d(x0 = 0), so C`(Pn) is

generated by (x0 = 0) and

C`(Pn) = 〈(x0 = 0)〉 ∼= Z.

• Let X = P1 × P1. Consider the decomposition

P1 × P1 = A2 ∪ (P1 ∪ P1).

Any irreducible codimension 1 subvariety D ⊂ P1 × P1 becomes principal when
restricted to A2: say

D = Z

(
f

(
x1

x0

,
y1

y0

))
.

Note that f(x1/x0, y1/y0) is a rational function on P1 × P1. If f has degree a in the
first variable and degree b in the second variable, then(

f

(
x1

x0

,
y1

y0

))
= D − a(x0 = 0)− b(y0 = 0).

Thus, any such D is equivalent (modulo principal divisors) to a(x0 = 0) + b(y0 = 0)
for some a, b ∈ Z, and

C`(P1 × P1) ∼= Z× Z.

Now let E be a smooth cubic in P2; say E = {zy2 = x3 − z2x}, with char(k) 6= 2, 3.
Notice that the line z = 0 intersects E 3-fold at ∞ since

z = 0, zy2 = x3 − z2x =⇒ x3 = 0,

and ∞ is an inflection point (or “flex”).

Proposition. For any p, q ∈ E, there exists r ∈ E such that p+ q ≡ r +∞ in C`(E).

Proof. We do this in two steps: first, there exists r such that p + q + r ≡ 3∞, and second,
there exists r such that r + r ≡ 2∞.

For the first part, let {L = 0} be a line through p and q, and let r ∈ E be the third point
of E hit by {L = 0}, so {p, q, r} = E ∩ {L = 0}. Then L/z is rational with divisor(

L

z

)
= (p) + (q) + (r)− 3(∞),

so p + q + r ≡ 3∞ in the divisor class group. For the second part, let r ∈ E be the third
point of E hit by the line {L′ = 0} passing through r and ∞; then L′/z has divisor(

L′

z

)
= (r) + (r) + (∞)− 3(∞) = (r) + (r)− 2(∞)

so r + r ≡ 2∞ in the divisor class group. Putting these two facts together,

p+ q ≡ (p+ q + r)− r ≡ 3∞− (2∞− r) ≡ r +∞

in C`(E). �
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Figure 6. The smooth cubic E = {zy2 = x3 − z2x} in P2.

Figure 7. The points p, q, r, r in E (here r is labeled r′).

The upshot of this is that any class in C`(E) can be written as

p+ k∞ = (p−∞) + (k + 1)∞

for some p ∈ E and k ∈ Z. On Friday, we’ll check that there is a map

C`(X)
deg−−→ Z, k∞ 7→ k

where we have a short exact sequence

0→ C`0(X)→ C`(X)
deg−−→ Z→ 0.

We’ve shown that every element of C`0(X) can be written in the form (p−∞). Note that

C`(E) ∼= Z× C`0(E)

and in fact, E → C`0(E) is bijective.
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At the end of class, Professor Speyer tried to define the canonical divisor but the conver-
sation was too rushed; we’ll return to this.

November 28: Linear systems and maps to projective space. At the start of class,
there was a question about how to discuss regular n-forms in the Shavarevich style. Define
T⊕nX to be the subvariety of (TX)n consisting of n-tuples ((x,~v1), (x,~v2), . . . , (x,~vn)).
Then a regular n-form can be thought of as a regular function on T⊕nX which is multilinear
and skew symmetric in its vector arguments. Of course, if we could glue varieties abstractly,
we could just define

∧n TX.
We now move to the main topic, using divisors to describe maps to projective space. Let

X be irreducible, smooth in codim 1. Given a map i : X → Pn, we will describe how
to get a class i∗(H) ∈ C`(X): Choose a hyperplane H such that i(X) * H. By Krull’s
Principal Ideal Theorem, i−1(H) is a union of irreducible divisors D1 ∪ · · · ∪Dr . For each
Dj, choose zj ∈ Dj where Dj is locally principal. Choose Uj with i(zj) ∈ Uj where H is
locally principal; say H ∩Uj = (λj) . So i∗(λj) is regular on i−1(Uj) 3 zj. We will take i∗(H)
to be

∑
j vDj(λj)[Dj]. One can easily check that this element of Div(X) does not depend on

the choices of Uj, zj and λj.
How does it depend on the choice of H? If we have two hyperplanes H1 and H2 corre-

sponding to degree 1 homogeneous polynomials L1 and L2 then:

i∗(H1)− i∗(H2) = (
L1

L2

).

So i∗(H) is well defined in C`(x) and is effective.

Remark. More generally, i : X → Y induces i∗ : Pic(Y )→ Pic(X). When Y = Pn, we have
Pic(Pn) ∼= Z, so the definition given here says where the generator of Pic(Pn) goes. This is
harder to define, however, because we can no longer assume that a class in Pic(Y ) can be
represented by a divisor not containing the image of i.

We say that E ∈ Div(X) is effective if E =
∑
ciDi with ci ≥ 0, for some irreducible

codimension 1 subvarieties Di. We write E ≥ 0.
Let X be irreducible and smooth in codimension 1. Let D be a divisor. Define:

H0(X,O(D)) = {f ∈ Frac(X)∗ : D + (f) ≥ 0} ∪ {0}
H0(X,O(D)) will be a k-vector subspace of Frac(X). To see this, recall that, for every
codimension 1 subvariety K, we have

vK(f1 + f2) ≥ min(vK(f1), vK(f2))

So H0(X,O(D)) is closed under addition. It is also obviously closed under scalar multipli-
cation, so it is a vector subspace.

Example. We consider H0(P1,O(d.∞)). We have Frac(X) = k(x1
x2

); put x = x1
x2

. Any

f ∈ H0(O(d.∞)) is regular on P1 − {∞}, meaning that f ∈ k[x1
x2

]. It must also have a pole

at ∞ of order ≤ d. So H0(P1,O(d.∞)) is the vector space of polynomials of degree ≤ d.
This is a vector space of dimension d+ 1.

Example. Let X = {zy2 = x3 − z2x} ⊂ P2 with char(k) 6= 2. Let ∞ be the point
(0 : 1 : 0). So X −∞ = MaxSpec k[u, v]/(v2 = u3− u) where u = x/z, v = y/z. A k-basis of
k[]/(v2 = u3 − u) is the monomials of the form uj and ujv. We compute that v∞(u) = −2
and v∞ = −3. We see that v∞(uj) = −2j and v∞(ujv) = −2j − 3, so these monomials have
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distinct valuations. We see that H0(X,O(d∞)) is the span of those monomials in this list
with valuation ≥ −d. For example,

H0(X,O(∞)) = k
H0(X,O(2∞)) = k[1, u]
H0(X,O(3∞)) = k[1, u, v]
H0(X,O(4∞)) = k[1, u, v, u2]

Let q0, q1, . . . , qn ∈ H0(X,O(D)). We will try to map X → Pn by (q0 : q1 : · · · : qn).
Let’s see some examples with X = P1:

H0(P1,O(D)) (q0 : q1 : · · · : qn) the map P1 → Pn

H0(P1,O(∞)) (1 : x1
x2

) P1
∼=−−→ P1

H0(P1,O(2∞)) (1 : x1
x2

:
x21
x22

) P1 conic
↪−−−−→ P2

H0(P1,O(2∞)) (1 :
x21
x22

) P1 two fold cover−−−−−−−→ P1

H0(P1,O(2∞)) (1 : x1
x2

: 1 + x1
x2

) P1 line
↪−→ P2

As we see in the last example, if there is a linear relation between the qi, then the image of
X lands in a linear subspace. So we usually assume the qi are linearly independent.

We can describe this in a more coordinate independent way. Let V be a finite dimensional
subspace of H0(X,O(D)). We will try to get a linear map X → P(V ∗). Why should there
be a dual? Let x ∈ X. If the functions of V are regular at x, then evaluation at x gives an
element of V ∗, and we can hope it is not zero. We will describe something more sophisticated,
which lets us deal with the poles of the functions in V . We pause to introduce the vocabulary:
A vector subspace V of H0(X,O(D)) is called a linear series ; if V = H0(X,O(D)) then
V is called a complete linear series .

We now explain the caveats which lead us to say that we will try to make such a definition.
For g ∈ H0(X,O(D))− {0}, let ZD(g) be the divisor D + (g) in Div(X). So ZD(g) ≥ 0.

Let B = ∩g∈V zD(g). The set B is called the set of base points of V . We will define a map

X −B → P(V ∗).

Here is how it is defined. Let x ∈ X − B. Pass to a neighborhood of x where D is
principal, say D = (f) for f ∈ Frac(X). So, for g ∈ V , the rational function fg is regular at
x. Evaluating at x gives a map g 7→ (fg)(x) from V → k, so an element of V ∗. Since x 6∈ B,
there is some g ∈ V for which this map is not zero, so this is a nonzero element of V ∗. If we
replace f by another generator of D, we rescale this map. So we have a well defined point
in P(V ∗). (Exercise: This is a regular map.)

There is one final subtle issue, which is especially confusing if you only ever study curves. B
is a closed subset of X, so it has a decomposition into irreducible components. Suppose that
one of those components, call it E, has codimension 1. Then V lies in H0(X,O(D − E)) ⊆
H0(X,O(D)). We can consider V as a linear series for D − E instead of D. This will
potentially remove E from B, if it doesn’t then we can subtract off E again. Continuing in
this manner, we can reduce to the case that B is codimension 2.

The two constructions considered today do invert each other.

Proposition. Let D be a divisor and let V ⊆ H0(X,O(D)). Suppose that the set of base
points is empty, so we actually get a map i : X → P(V ∗). Then i∗(H) is the class [D] in
C`(X).
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November 30: The canonical divisor, computations with the hyperelliptic curve.
Before talking about n-forms, let’s make sure we are happy with the basic properties of 1-
forms: A 1-form is a function of (x,v) where x ∈ X and ~v ∈ TxX. It must be linear in ~v and
regular on TX. Locally, 1-forms look like

∑
i fidgi for regular functions fi and gi (On affine

varieties every 1-form is globally of this form; on projective varieties you need to glue.).
If X is smooth of dimension k, then regular 1-forms are equal to Kähler 1-forms. Locally,

we can pick k functions with df1, ..., dfk as a basis of T ∗xX. For a neighborhood U of X,
df1, ..., dfk are bases for all cotangent spaces T ∗yX, y ∈ U . Then 1-forms on U form a free
OU -module with basis df1, ..., dfk.

An n-form is a function of (x,~v1, . . . , ~vn) where x ∈ X and vi ∈ TxX. It must be
multilinear and antisymmetric in ~v1, . . . , ~vn, and regular on T⊕nX ⊂ (TX)n. Locally, n-
forms look like

∑
i fi(dgi1 ∧ ... ∧ dgin) for regular functions fi and gij. If X is smooth of

dimension n, then n-forms are locally a free module over regular functions of rank 1.
Suppose X is smooth of dimension n, ω is a rational n-form, D ⊂ X is irreducible of

codimension 1. We want to talk about vD(ω). Choose an open set U ∩D 6= ∅, small enough
that n-forms are free on U , say with generator η. Then ω = fη, f ∈ Frac(X). vD(ω) =
vD(f). If we replace η by η′, then η/η′ is a unit on U . So vD(η/η′) = 0, ωD(ω

η
) = ωD( ω

η′
).

We define (ω) =
∑
vD(ω)[D] in Div(X). If ω1, ω2 are 2 non-zero n-forms, then ω1 = gω2,

for a g ∈ Frac(X). So (ω1) = (ω2) + g. We get class in Cl(X) independent of choice of ω.
This is the canonical class.

Remark. On the problem set, you computed that the canonical divisor on Pn is −(n + 1)
times the hyperplane class. Here is a pretty way to see it: Let (z0 : ... : zn) be homogenous
coordinates on Pn and let xj = zj/z0. Then

(
dx1

x1

∧ ... ∧ dxn
xn

) =
∑
−(zj = 0).

We spent the rest of class working through the example of the hyperelliptic curve. This
is a curve X glued from two affine charts X0 and X∞ with equations

X0 = {y2
0 = a2g+1x

2g+1
0 + ...+ a1x0},

X∞ = {y2
∞ = a1x

2g+1
∞ + ...+ a2g+1x∞}.

These charts are glued by

x0 = x−1
∞ , y0 = y∞x

−(g+1)
∞

Denote the point where x0 = 0 by P0, the point where x∞ = 0 by P∞.
The regular 1-forms on X0 are free with generator ω0 = dx0

2y0
. We compute:

ω0 =
dx−1
∞

2y∞x
−(g+1)
∞

=
−xg+1
∞ x−2

∞ dx∞
2y∞

= −x
g−1
∞ dx∞
2y∞

= −xg−1
∞ ω∞

vP∞(x∞) = 2, vP∞(y∞) = 1, vP∞(x0) = −2, vP∞(y0) = −2g − 1.

vP∞(ω0) = vP∞(xg−1
∞ ) = 2(g − 1).

Thus the canonical class is (2g − 2)[P∞].
What are the regular 1-forms on X? On X0 they look like fω0 for a regular function f on

X0. Every regular function on X0 is of the form

f = g(x0)y0 + h(x0).
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When does fω extend to P∞? Notice that

xk0ω0 = x−k∞ (−xg−1
∞ ω∞) = −xg−1−k

∞ ω∞

So fω0 extends if and only if k 6 g − 1. For

xk0y0ω0 = x−k∞ (y∞x
−g−1
∞ )(−xg−1

∞ ω∞) = −x−2−k
∞ y∞ω∞,

x−2−k
∞ y∞ is never regular at P∞. In short, the vector space of global 1-forms is g-dimensional,

with basis xk0ω0 for 0 6 k 6 g − 1.

Remark. The corresponding map from X to Pg−1 is (1 : x0 : x2
0 : ... : xg−1

0 ).

December 3: Finite maps, Degree and Ramification. Let X and Y be irreducible
varieties, and let π : Y → X be a finite map. Then there exists an inclusion of fraction fields
Frac(X) ⊆ Frac(Y ), with degree of field extension d = [Frac(Y ) : Frac(X)]. Let x ∈ X, since
π is a finite map, the fibre over x is finite, and we expect the number of points lying over x
to be d = #π−1(x). We are finally ready to state two theorems which make this expectation
precise.

Theorem. Let Y = MaxSpec(B), X = MaxSpec(A) be irreducible affine varieties over k, of
dimension d, and π : Y → X be a finite map. For every x ∈ X, we have dimk(B/mxB) > d,
where mx is the maximal ideal in A corresponding to x.

Proof. Choose a k-basis {f̄1, f̄2, ..., f̄e} of B/mxB, and lift it to f1, f2 . . . , fe ∈ B. By
Nakayama’ Lemma (after localizing) the fj generate B as an A-module. So Frac(B) is
generated by f1, . . . ,fe as Frac(A)-vector space, and we thus have e ≥ d. �

Theorem. Let π : Y → X be a finite map with X, Y irreducible. If in addition X is normal
then #π−1(x) 6 d for all x ∈ X, with d = [Frac(Y ) : Frac(X)] the degree of field extension.

Proof. We may pass to affine cases, and denote the rings of regular functions on X and Y
by A and B. Let π−1(x) = {y1, ..., yc}, choose θ ∈ B such that it takes distinct values at
y1, .., yc. This can be done since π−1(x) = {y1, ..., yc} is a closed discrete subset, and the
regular functions on π−1(x) are restriction of functions in B.
Since π is finite, θ is integral over A, and A is normal, the minimal polynomial of θ has
coefficients in A, and of degree n 6 d.
Write the minimal polynomial of θ as θn + an−1θ

n−1 + ...+ a1θ + a0 = 0 with ai ∈ A. Let θ
take value at yi, then the polynomial f(x) = xn + an−1x

n−1 + ... + a1x + a0 has d distinct
roots, hence n > c and we have d > n > c. �

Corollary. If π : Y = MaxSpec(B) → X = MaxSpec(A) is a finite map between irreducible
varieties, X is normal, x ∈ X and mxB is radical, then #π−1(x) = d where d = [Frac(Y ) :
Frac(X)].

Proof. By the theorem, d 6 dimk(B/mxB) = #π−1(x) 6 d The middle equation is true
because mxB is radical, hence B/mxB represents the regular function ring of π−1(x). �

Corollary. Let π : Y → X be a finite map between irreducible varieties, X is normal,
x ∈ X. If TyY ∼= TxX for every y ∈ π−1(x), then #π−1(x) = d.

Proof. Pass to affine cases, let us denote B = O(Y ), A = O(X). We only need to show
that mxB is a radical ideal. This property is local in Y , hence we may localize at each
y ∈ π−1(x). Since TyY ∼= TxX, we have mx/m

2
x
∼= my/m

2
y. This implies mxB + m2

y = my,
which by Nakayama’s Lemma, implies mxB = my, hence radical. �
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Corollary. Let π : Y → X be a finite map between irreducible varieties, X is normal,
[Frac(Y ) : Frac(X)] is separable, then there exists an non-empty open subset U of X such
that d = #π−1(x) for every x ∈ U .

Proof. Pass to affine case. Denote B = O(Y ), A = O(X), let θ ∈ B generates the field
extension Frac(B)/Frac(A). Let I = {a ∈ A|aB ⊆ A[θ]}, this is an non-zero ideal, since
localize at 0, B is generated by θ over A(0). Choose f ∈ I and localize it, we may assume
B is generated by θ over A. Let f(X) ∈ A[X] be the minimal polynomial of θ, let a =
N(f ′(θ)) ∈ A, N denote the norm. Then take the open subset U = MaxSpec(Aa) makes
TyY ∼= Tπ(x)X for every x ∈ U , hence d = #π−1(x) for every x ∈ U . �

Example. Here is an example of why we need normality. Let Y = A1 with coordinate t,
and let X correspond to the subring k[t(1− t)2, t2(1− t)] ∼= k[x, y]/(xy− (x+ y)3). In other
words, we are discussing the map t 7→ (t(1 − t)2, t2(1 − t)), which parametrizes the curve
xy = (x + y)3 in A2. We have Frac k[t(1 − t)2, t2(1 − t)] = Frac k[t], so the extension of
fraction fields has degree d = 1, but the inverse image of the point (0, 0) is the two points
t = 0 and t = 1. We depict this cubic below.

Let’s see where normality shows up in the proof. Putting x = t(1− t)2, y = t2(1− t), we
have t = y

x+y
. But t also obeys the monic polynomial t2− t+x+y = 0. So t gives an explicit

example of the failure of O(X) to be integrally closed, and this is why it is capable of taking
two values on f−1(0, 0) even though it obeys the degree 1 polynomial (x+ y)t− y = 0.

There are lots of examples where #π−1(x) < d, because
√
mxB 6= mxB. But it is hard to

write down examples where dimB/mxB 6= d. Looking back at the Nakayama proof, we see

Proposition. We have dimB/mxB 6= d if and only if B is locally free as an A-module at
x. (Meaning that B becomes free after localizing to a neighborhood of x.)

Example. An example of dimB/mxB 6= d. Let Y be the subset of A4 defined by I =
(wx, xy, wz, xz), with O(A4) = k[w, x, y, z], B = O(Y ) = k[w, x, y, z]/I, let X = A2, with
A = O(A2) = k[u, v]. Define π : Y → X, (w, x, y, z) 7→ (w + y, x+ z). First π is finite since,
for example w2 − uw = wy = 0, hence w is integral over A. The fibre of x = (0, 0) ∈ X is
(0, 0, 0, 0). But B/mxB = k[w, x, y, z]/(I, w + y, x + z) = k[w, x]/(w2, wx, x2), which is of
dimension 3.
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The following theorem says that in most interesting cases, O(Y ) is locally free.

Theorem (Miracle Flatness Theorem). Let π : Y → X be a finite map between irreducible
varieties. Assume X smooth, Y Cohn- Macaulay (in particular smooth), then O(Y ) is locally
free over O(X).

Remark. O(Y ) is locally free over O(X) is equivalent to O(Y )π−1(x) free over Ox for every
x ∈ X. Pass to affine case, B = O(Y ), A = O(X), x ∈ X, then O(Y )π−1(x) = Bmx .

The next theorem says O(Y ) is locally free at large open sets.

Theorem. Let π : Y → X be a finite map between irreducible varieties, X normal, then
Z = {x ∈ XO(Y )π−1(x) free over Ox} is a closed subset of codimension > 2. In particular,
if Y,X are curves, then X normal implies O(Y ) locally free over O(X).

Proof. (Note from Prof. Speyer – I’m pretty sure I only did the curve case in class, but
the note taker put in a nice proof in general, so I’ll leave it here.) Pass to affine case,
denote B = O(Y ), A = O(X). We have already seen that O(Y )π−1(x) free over Ox implies
O(π−1(U)) free over O(U) for some open neighborhood of x, hence Z is closed. Let D ⊆ Z
be a codimension one irreducible subset, then it corresponds to a prime ideal p ⊆ A with
height 1. But A is normal, hence Ap is a 1-dimensional Noetherian integral closed local ring,
hence is a DVR, hence a PID, and finitely generated torsion free modules over PIDs are free
(B is a domain). This shows that some open U intersects D such that O(π−1(U)) free over
O(U), contradicting D ⊆ Z. �

December 5: The Riemann-Hurwitz Theorem. We first recall some things which were
mentioned too briefly in the past.

Proposition. If a variety X is smooth in codimension 1, and B is closed in X, then given
a map φ : XrB → Pn, we can extend φ so that in fact B may be taken to have codimension
at least 2.

Proof. For each codimension 1 irreducible component D of B, choose an open set U meeting
D but no other component of B, where D is assumed to be principal in U , given as the
vanishing locus of some g. Then on U r D we have φ : U r D → Pn given by φ = (f0 :
· · · : fn), where f0, . . . , fn are regular on U r D (we may shrink U enough so that this
is true). Without loss of generality, suppose that vD(f0) = minj(vD(fj)). Then the map
(gvD(f0)f0 : · · · gvD(f0)fn) extends to an open subset of D. �

So, maps from a smooth curve to Pn always extend. In particular, if X is a smooth
projective curve, and f ∈ FracX (so, f : U → A1 for some U ⊆ X open), then f extends to
a map X → P1. This extension is a finite map of degree deg(f).

Remark. Question asked in class: Is the analytic version of this the Riemann Extension
theorem? Answer: Not in a simple way. Notice that the map z 7→ (e1/z : 1) from C−{0} to
P1 cannot extend to z = 0. So algebraicity, not just analyticity, is important.

Since X is a curve, O(Y ) is locally free over O(X). So, for all y ∈ P1, the fiber #f−1(y)
counted with multiplicity, is equal to deg(f). Therefore, for any y ∈ P1, we have∑

x∈f−1(y)

ram(x) = deg(f).
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So, the divisor (f) on X has deg(f) zeros and deg(f) poles.
We can use this fact to define a degree map on C`(X). To be specific, we can map Div(X)

to Z by sending every point to 1. Then the observation that (f) has the same number of
zeroes and poles shows that this map passes to the quotient C`(X).

We define the genus g of X by deg(K) = 2g − 2, where K is the canonical divisor of X.

Remark. It is not clear at this point that g ≥ 0, or that g ∈ Z.

We review the curves that we have seen so far: On P1, we have deg(K) = −2 so g = 0. On
a cubic curve, deg(K) = 0 so g = 1. Note also that the g in the definition of a hyperelliptic
curve coincides with our genus g.

Remark. We can think of this definition as saying that a vector field on a genus g surface
has 2− 2g zeros, counted with sign (cf. Poincaré-Hopf theorem).

Theorem. Let X, Y be smooth projective curves of genus gX , gY , respectively, over a field
of characteristic 0. Let f : Y → X be a finite degree d map. Then

2gY − 2 = d(2gX − 2) +
∑
y∈Y

(ram(y)− 1).

Note that we are in characteristic 0, and so by Sard’s Theorem, the above sum has finitely
many nontrivial terms.

Proof. Let ω be a nonzero rational 1-form on X. Then f ∗ω is a 1-form on Y : we compute its
degree. Let y ∈ Y , let x = f(y), let vx(ω) = m, and let uy and ux vanish to order 1 near x
and near y, respectively. Then ω = umx dux ·(unit at x), and so f ∗ω = (f ∗ux)

md(f ∗ux)·(unit).
Write e = ram(y). Then f ∗ux = uey · (unit). We are in characteristic 0, so we have

df ∗ux =
[
eue−1

y duy · (unit)
]

+ uey · d(unit),

and hence vy(d(f ∗ux)) = e− 1, and so vy((f
∗ux)

m) = me. Therefore

2gY − 2 = degKy

=
∑
y∈Y

[
vf(y)(ω) · ram(y) + ram(y)− 1

]
=
∑
x∈X

vxω ·

 ∑
y∈f−1(x)

ram(y)

+
∑
y∈Y

(ram(y) = 1)

= d
∑
x∈X

vxω +
∑
y∈Y

(ram(y)− 1)

= d(2gX − 2) +
∑
y∈Y

(ram(y)− 1).

�

Example (Hyperelliptic curves). For a hyperelliptic curve H and a degree 2 cover H → P1,
we have 2gH − 2 = 2 · (−2) + (2g + 2), and so gH = g.

Throughout, let us assume we are in characteristic 0.

Corollary. If gX ≥ 2, then all nonconstant endomorphisms of X are automorphisms.
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Corollary. If X, Y are smooth projective curves, and there exists a nonconstant map f :
Y → X, then gX ≤ gY .

Proof.
2gY − 2 ≥ deg(f)(2gX − 2) ≥ 2gX − 2.

�

Corollary. Any finite map from a curve to P1 is ramified over ≥ 2 points.

Proof.

−2 ≤ 2gY − 2 = d(−2) +
∑
y∈Y

(ram(y)− 1)

≤ −2d+ (d− 1)(#ramification points).

Rearranging, we get #ramification points ≥ 2. �

The last corollary can be understood as telling us that “P1 and A1 are simply connected.”

December 7: Sheaf cohomology and start of Riemann-Roch. Let X be a smooth,
projective, genus g curve. For D ∈ Div(X), we defined H0(X,O(D)) = {f ∈ Frac(X) :
(f) + D ≥ 0}, this is a k-vector space. How does its dimension depend on D? For brevity,
we’ll put h0(D) = dimkH

0(X,O(D)).
First of all, we claim that h0(D) only depends on the class of D in C`(X). Proof: Sup-

pose that D2 − D1 = (g). Then multiplication by g is an isomorphism H0(X,O(D1)) →
H0(X,O(D2)).

Example. When X = P1, we computed that H0(P1,O(d∞)) = d+ 1 for d ≥ 0.

Example. For a cubic curve E, we computed that

H0(E,O(d∞)) =


d d ≥ 1

1 d = 0

0 d < 0

.

Example. For the hyperelliptic curve Hg, and p∞ the point at infinity, you computed on
the problem set that

H0(H∞,O(dp∞)) =

 d− g + 1 2g ≤ d
bd/2c+ 1 0 ≤ d ≤ 2g
0 d < 0

.

Theorem (Riemann’s part of Riemann-Roch). We have

degD − g + 1 ≤ h0(D) ≤ max(degD + 1, 0).

When degD < 0, we have h0(D) = 0. For degD sufficiently large, we have h0(D) =
degD − g + 1.

Let’s start with the easiest part:

Proposition. If degD < 0, then h0(D) = 0.

Proof. Let f ∈ H0(X,O(D)). We must show that f = 0. If not, we have (f) + D ≥ 0,
so deg(f) + degD ≥ 0. But principal divisors have degree 0 and D has negative degree, a
contradiction. �
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We now need a key computation about how h0(D) varies when p changes.

Proposition. Let p be a point of X. Then

h0(D + p) = h0(D) + (0 or 1).

At the moment, we haven’t said that h0(D) is finite, so we mean this in the sense that
one side is infinite if and only if the other is. We will show that h0(D) is finite very soon.

Proof. We have H0(X,O(D)) ⊆ H0(X,O(D + p)), so h0(D + p) ≥ h0(D). For the reverse
bound, we need to show that the quotient H0(X,O(D + p))/H0(X,O(D)) is at most one
dimensional. In other words, we need to show that any two vectors in this quotient are
linearly dependent. Let f1 and f2 ∈ H0(X,O(D + p)), let c be the coefficient of p in D + p,
and let t be a uniformizer at p. So we have power series expansions of the form f1 = a1t

−c+· · ·
and f2 = a2t

−c + · · · . So some linear combination of f1 and f2 has a pole of order ≤ c − 1
at p, and this linear combination lies in H0(X,O(D)). �

Combining the last two results, we deduce:

Proposition. We have h0(D) ≤ max(degD + 1, 0).

On in other words, we have an exact sequence

0→ H0(X,O(D))→ H0(X,O(D + p))→ k (∗)
which may or may not be surjective in the last slot. This suggests that we should define an
H1(X,O(D)) to extend this sequence.

Note also that the sequence (∗) still exists when X is not projective. Indeed, if X is affine,
then we further have surjectivity in the last arrow, since we can use the Chinese Remainder
Theorem to construct a function which does anything we want at the finite number of points
of D + p. This suggests that we should have H1 vanish on affine varieties.

Okay, these were the easy observations. Now we have to get to hard work. On the
hyperelliptic curve, we covered X by X0 and X∞, computed regular functions on both of
them, and then checked which functions are regular on both. Mimicing this approach, let
X be covered by two open affines U and V . We adopt the new notation O(D)(U) for
H0(U,O(D ∩ U)). So

H0(X,O(D)) = O(D)(U) ∩ O(D)(V )

with the intersection taking place inside FracX or, better, inside O(D)(U ∩ V ).
It is extremely profitable to reframe this in a different way:

H0(X,O(D)) = Ker
(
O(D)(U)⊕O(D)(V ) −→ O(D)(U ∩ V )

)
where the map is (f, g) 7→ f − g. This suggests making the definition

H1(X,O(D)) = CoKer
(
O(D)(U)⊕O(D)(V ) −→ O(D)(U ∩ V )

)
and h1(D) = dimH1(X,O(D)).

Remark. We have not proved that H1 is independent of the choice of open cover, but it is.
We also have not yet proved that H1 is finite dimensional but, for projective varieties, it is.

Remark. There are definitions of Hq(X, ) for q ≥ 0 and X any variety. The formula above
is correct if X is a higher dimensional variety which happens to have an open cover by two
affines, but most higher dimensional varieties don’t. If X has an open cover by r affines,
then Hq vanishes for q ≥ r.
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Fortunately, curves do have an open cover by two affines. Take a finite map X → P1, and
take the preimage of the standard cover of P1.

Here is a strategy which is true throughout math – when understanding dim Ker(φ) is
hard, it may be better to study dim Ker(φ)− dim CoKer(φ)). For example, if φ is an n×m
matrix, the former involves row reduction and the latter is just m − n. We showed before
that h0(D + p) = h0(D) + (0 or 1). We now consider the analogous result for h0 − h1.

Theorem. Let X be a smooth projective curve, D a divisor, p a point of X, and U , V an
open affine cover of X. Then

h0(D + p)− h1(D + p) = h0(D)− h1(D) + 1.

Since we haven’t shown that h1(D) < ∞ yet, we have to understand this as saying one
side is infinite if and only if the other is.

Proof. We cover the case that p ∈ U∩V , the cases where p lies only in one set are similar but
simpler. As observed above, if W is affine, then O(D+ p)(W )/O(D)(W ) is one dimensional
or, in other words, we have a sort exact sequence:

0→ O(W )(D)→ O(W )(D + p)→ k → 0.

Stringing several of these together, we have a commutative diagram with exact rows

0 // O(U)(D)⊕O(V )(D) //

[ 1 −1 ]

��

O(U)(D + p)⊕O(V )(D + p) //

[ 1 −1 ]

��

k ⊕ k //

[ 1 −1 ]

��

0

0 // O(U ∩ V )(D) // O(U ∩ V )(D + p) // k // 0

The snake lemma gives us a long exact sequence

0→ H0(X,O(D))→ H0(X,O(D+ p))→ k → H1(X,O(D))→ H1(X,O(D+ p))→ 0. �

We therefore deduce

Theorem. Define
gcohom = dimH1(X,O).

Then
h0(D)− h1(D) = 1− gcohom + degD.

Next time, h1(D) <∞, and why we care.

Remark. On the problem set, we computed that H1(X,O) for the hyperelliptic curve has
dimension g. The question was asked “why not 2g, the topological H1?”. Answer: On a
smooth projective curve (or, more generally, a smooth projective variety), there is a short
exact sequence:

0→ H0(X,Ω1)→ H1
DR(X)→ H1(X,O)→ 0.

Here H0(X,Ω1) is the global 1-forms, and the map is taking the deRham class of a 1-form.
We have dimH0(X,Ω1) = dimH1(X,O) = g and dimH1

DR(X) = 2g.
The identification of H1(X,O) with H1

DR(X)/H0(X,Ω1) may be described as follows.
Take a class in H1(X,O) and lift it to f ∈ O(U ∩V ). Using partitions of unity, we can write
f = fU + fV with fU ∈ C∞(U) and fV ∈ C∞(V ). Then ∂̄(fU) + ∂̄(fV ) = ∂̄f = 0 (the last
equality is because f is algebraic, hence analytic) so ∂̄(fU) = −∂̄(fV ) on U ∩ V . Define a
1-form on X by ∂̄(fU) on U and −∂̄(fV ) on V . This turns out to be closed, and the class of
this 1-form in H1

DR is well defined up to H0(X,Ω1).
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December 9: Overview of Riemann-Roch and Serre Duality. Our first goal is to
clear up the remaining point from last time: dimh1(D) <∞ and h1(D) = 0 for degD large.

We set up our notation to mimic the hyperelliptic curve: Choose a finite, degree m map
φ : X → P1. Put X0 = φ−1(P1 − {0}) and X∞ = φ−1(P1 − {∞}). Let D0 and D∞ be the
divisors φ∗([0]) and φ∗([∞]) (so degD0 = degD∞ = m.) Finally, let t be the coordinate on
P1, so (t) = D0 −D∞.

The following lemma addresses our loose ends:

Lemma. Let E be any divisor on X. For N sufficiently large, we have h1(E +ND∞) = 0.

Proof. Put

M0 = O(E)(X0) M∞ = O(E)(X∞) M0∞ = O(E)(X0 ∩X∞).

So these are finitely generated modules over k[t], k[t−1] and k[t, t−1] respectively. We have
M0, M∞ ⊂M0∞ with k[t−1]M0 = k[t]M∞ = M0∞. We have

O(E +ND∞) = O(E) = M0 and O(E +ND∞) = tNM∞.

Thus our goal is to show that there is an N for which M0 + tNM∞ = M0∞. Let e1, e2, . . . ,
ea be a k[t]-spanning set for M0 and f1, f2, . . . , fb a k[t−1]-spanning set for M∞. So both
are k[t, t−1]-spanning sets for M0∞.

We have fj =
∑
gijei for some gij ∈ k[t, t−1]. Choose N large enough that all tNgij lie in

k[t]. So the tNfj lie in the k[t]-span of the ei.
Now, M0∞ is spanned over k[t, t−1] by the tNfj. We conclude that

M0∞ = k[t]〈tNfj〉+ k[t−1]〈tNfj〉 ⊆ k[t]〈ei〉+ k[t−1]〈tNfj〉 = M0 + tNM∞. �

Since h1(D) ≤ h1(D + p) + 1, we deduce that all the h1(D) are finite, and gcohom < ∞.
We rattle off a bunch of easy corollaries:

Corollary. For any divisor D, we have h0(D) ≥ degD − gcohom + 1. For any E, if N is
sufficiently large, we have h0(E +ND∞) = deg(E) +Nm− gcohom + 1.

Remark. This isn’t easy enough to call a corollary but, if X is a degree m curve of genus g
in projective space, then its Hilbert polynomial is hpoly(N) = Nm−g+1 for similar reasons.

Corollary. For any point x∞ ∈ X, we can find a map f : X → P1 such that f−1(∞) = {x∞}.

Proof. We have h0((gcohom +1)x∞) ≥ 2, so H0(X,O((gcohom +1)x∞)) contains a nonconstant
function f . This function has the desired property. �

Corollary. For any x∞ ∈ X, the open set X − {x∞} is affine.

Remark. Working a little harder, for any k points x1, x2, . . . , xk, the open set X −
{x1, . . . , xk} is affine.

Corollary. For any divisor E and any x∞ ∈ X, if N is sufficiently large, then h1(E +
Nx∞) = 0.

Proof. We can find a map f : X → P1 such that f−1(∞) = {x∞}. Using this as our map
to P1, we have D∞ = mx∞. For each r from 0 to m − 1, if M is sufficiently large, then
h1(E + rx∞ + M(m∞)) = 0. Choosing N large enough to cover each residue class modulo
m, we have the conclusion. �

We can now prove a result which generalizes our earlier work on the cubic curve:
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Theorem. Fix x∞ ∈ X. Than any class in C`(X) can be written in the form Nx∞ − x1 −
x2 − · · · − xgcohom for some points x1, x2, . . . , xgcohom ∈ X.

Proof. Let D ∈ Div(X) with degree d. We have h0(−D + (d + gcohom)x∞) ≥ 1, so there
is a nonzero f in H0(X,O(−D + (d + gcohom)x∞)). Then (f) − D + (d + gcohom)x∞ is
effective, say (f) − D + (d + gcohom)x∞ = x1 + x2 + · · · + xgcohom . We rearrange to get
[D] = (d+ gcohom)x∞ − x1 − x2 − · · · − xgcohom in C`(X). �

Let C`N(X) be the degree N divisors in X. This result shows that Xgcohom surjects onto
each C`N(X) so, if we had a natural variety structure on C`N(X), it would be at most
gcohom-dimensional. Working a bit harder, we can show that dim C`N(X) should be exactly
gcohom. All the C`N(X) are cosets of C`0(X), so they are all isomorphic. For N sufficiently
large, consider the maps XN → XN/SN → C`N(X). The first map is finite, so dimensional
preserving. The fiber of the second map above [D] is {{x1, . . . , xN} : x1 +x2 + · · ·+xN ≡ D}.
We can rewrite this as {{x1, . . . , xN} : ∃f : (f) +D = x1 + · · ·+xN}. The set of f such that
(f) +D is effective is H0(X,O(D)), and two such f give the same {x1, . . . , xN} if and only
if they are proportional. So the fiber of XN/SN over D is P(H0(X,O(D))). Thus, if we had
a variety structure on C`N(X), then XN/SN → C`N(X) would, for N large, be a surjection

with fibers isomorphic to PN−gcohom .
Finally, we should talk about Serre duality. We have already shown that

h0(D)− h1(D) = degD − gcohom + 1.

But what makes this result really powerful is combining it with:

Theorem (Serre Duality). The vector spaces H1(X,O(D)) and H1(X,O(K −D)) are nat-
urally dual to each other. In particular, h1(D) = h0(K −D).

Let’s see some corollaries, and then ask where this pairing comes from.

Corollary. We have gcohom = g, where g was defined as degK = 2g − 2.

Proof. Adding h0(D)−h0(K −D) = degD− gcohom + 1 and h0(K −D)−h0(D) = deg(K −
D)− gcohom + 1 gives 2gcohom − 2 = degD − deg(K −D) = degK. �

We also deduce that g is a nonnegative integer.

Corollary. We have h0(K) = g and h1(K) = 1.

Proof. Serre duality turns these into the statements dimH1(X,O) = g and dimH0(X,O) =
1. The former is the definition of gcohom and the latter is because X is projective and
irreducible. �

Corollary. We have h1(D) = 0 for any D with degD ≥ 2g − 1.

Proof. Serre duality turns this into the claim that h0(K−D) = 0 when deg(K−D) < 0. �

So, what is this mysterious pairing? H0(X,O(K − D)) is the same as 1-forms which
vanish on D. If f ∈ O(D)(U ∩ V ), and ω is a global 1-form vanishing on D, then fω
is a 1-form on U ∩ V , and represents a class in H1(X,Ω1). The pairing is the composite
of this multiplication H1(X,O(D)) × H0(X,Ω1(−D)) → H1(X,Ω1) with an isomorphism
H1(X,Ω1)→ k. So, what is the latter map?
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Thinking over the complex numbers, we have the following commutative diagram with
exact rows. The bottom row is part of the Meyer-Vietores sequence; the top row is the
definition of H1(X,Ω1) and the dashed arrow is defined by commutativity.

Ω1(U)⊕ Ω1(V ) //

��

Ω1(U ∩ V ) //

��

H1(X,Ω1)

��
H1
DR(U)⊕H1

DR(V ) // H1
DR(U ∩ V )

δMV // H2
DR(X)

This dashed arrow is the map H1(X,Ω1) → C. Let’s see how to think about it without
getting into the details of the Meyer-Vietores map δMV .

The isomorphism H2
DR(X) → C is given by integration over X (actually, we want to

multiply the integral by 1
2πi

). Choose a contour C which cuts X into two pieces, one in U
and one in V . Then

∫
X
δMV (η) =

∫
C
η. Let X \U = {p1, . . . , pa} and let X \V = {q1, . . . , qb}.

Then C is homologous to a set of a small circles Si around the pi, so
∫
C
η =

∑
respi(η). This

last makes sense over any field.

Theorem (Serre Duality made explicit). Let X = U ∩ V where X \ U = {p1, . . . , pa} and
let X \ V = {q1, . . . , qb}. Then, for f ∈ O(D)(U ∩ V ) and ω ∈ Ω1(−D), the Serre duality
pairing is

〈f, ω〉 =
∑
i

respi(fω).

Hopefully, next term, you will prove it!
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