
A corollary of the Gauss Lemma
The point of this note is to prove the following commutative algebra lemma, which I have found

that I will need twice:

Theorem 1. Let A be an integrally closed domain. Let B be an A-algebra which is torsion-free
and finitely generated as an A-module. Let θ ∈ B and map A[t]→ B by t 7→ θ. The kernel of this
map is a principal ideal (g(t)) in A[t], and g is monic.

Moreover, if we write X = MaxSpec(A) and Y = MaxSpec(B), then the corresponding map
Y → Z(g) ⊂ X × A1 is surjective.

Recall that a polynomial is called monic if its leading coefficient is 1.
This result follows from Gauss’s Lemma:

Theorem 2. Let A be an integrally closed domain with fraction field K. Let f(t) be a monic
polynomial in A[t] and suppose that f(t) factors in K[t] as g(t)h(t) with g and h monic. Then g
and h have coefficients in A.

Gauss (1801) proved this when A = Z. Note that the case where A = Z and deg g = 1 is the
rational root theorem (actually proving the rational root theorem in that manner would be circular
though, since one usually uses the rational root theorem to show that Z is integrally closed).

Proof of Gauss’s Lemma. Let L be a splitting field for f over K and let f(t) =
∏r

i=1(t− αi) in L.
Let B be the integral closure of A in L, so the αi are in B. Then g(t) (and likewise h(t)) is of the
form

∏
(t−αij ) for some subset {i1, i2, . . . , is} of {1, 2, . . . , r}. Since B is a subring of L, this shows

that the coefficients of g(t) are in B.
So the coefficients of g are in B ∩K. Since A is algebraically closed, B ∩K = A. �

Proof of Theorem 1. Let K = Frac(A). First consider the map K[t] → B ⊗A K by t 7→ θ. Since
K[t] is a PID, the kernel of this map is principal; call it (g(t)) with g a monic polynomial in K[t].
(This is the minimal polynomial of θ.)

Since B is integral over A, we also know that θ obeys some monic polynomial f(t) ∈ A[t]. So
g(t)|f(t) in K[t] and, by Gauss’s Lemma, we deduce that g(t) ∈ A[t].

Now, g(θ) is a prioiri zero in B ⊗A K. But, since B is torsion-free as an A-module, this shows
that g(θ) = 0 in B. Thus, g(t) is in the kernel of A[t]→ B.

Suppose that h ∈ A[t] with h(θ) = 0. Then g(t)|h(t) in K[t], say h(t) = g(t)p(t). Using Gauss’s
Lemma again (or just writing out the division algorithm), p(t) ∈ A[t]. So g(t)|h(t) in A[t].

We have now shown that g(θ) = 0 and, if h(θ) = 0 then g(t)|h(t). So the kernel of A[t] → B is
(g(t)).

We have now shown that there is a well defined injective map A[t]/g(t)→ B. Translating directly
into geometry, we get a dominant map Y → Z(g). (Dominant means “has dense image”.) But B
is a finitely generated A-module, so it is also a finitely generated A[t]-module, and we thus know
that the map Y → X × A1 has closed image. We conclude that Z(g) is the image of Y . �


