A COROLLARY OF THE GAUSS LEMMA

The point of this note is to prove the following commutative algebra lemma, which I have found that I will need twice:

Theorem 1. Let A be an integrally closed domain. Let B be an A-algebra which is torsion-free and finitely generated as an A-module. Let $\theta \in B$ and map $A[t] \to B$ by $t \mapsto \theta$. The kernel of this map is a principal ideal (g(t)) in A[t], and g is monic.

Moreover, if we write X = MaxSpec(A) and Y = MaxSpec(B), then the corresponding map $Y \to Z(g) \subset X \times \mathbb{A}^1$ is surjective.

Recall that a polynomial is called *monic* if its leading coefficient is 1.

This result follows from Gauss's Lemma:

Theorem 2. Let A be an integrally closed domain with fraction field K. Let f(t) be a monic polynomial in A[t] and suppose that f(t) factors in K[t] as g(t)h(t) with g and h monic. Then g and g have coefficients in g.

Gauss (1801) proved this when $A = \mathbb{Z}$. Note that the case where $A = \mathbb{Z}$ and $\deg g = 1$ is the rational root theorem (actually proving the rational root theorem in that manner would be circular though, since one usually uses the rational root theorem to show that \mathbb{Z} is integrally closed).

Proof of Gauss's Lemma. Let L be a splitting field for f over K and let $f(t) = \prod_{i=1}^r (t - \alpha_i)$ in L. Let B be the integral closure of A in L, so the α_i are in B. Then g(t) (and likewise h(t)) is of the form $\prod (t - \alpha_{i_j})$ for some subset $\{i_1, i_2, \ldots, i_s\}$ of $\{1, 2, \ldots, r\}$. Since B is a subring of L, this shows that the coefficients of g(t) are in B.

So the coefficients of g are in $B \cap K$. Since A is algebraically closed, $B \cap K = A$.

Proof of Theorem 1. Let K = Frac(A). First consider the map $K[t] \to B \otimes_A K$ by $t \mapsto \theta$. Since K[t] is a PID, the kernel of this map is principal; call it (g(t)) with g a monic polynomial in K[t]. (This is the **minimal polynomial** of θ .)

Since B is integral over A, we also know that θ obeys some monic polynomial $f(t) \in A[t]$. So g(t)|f(t) in K[t] and, by Gauss's Lemma, we deduce that $g(t) \in A[t]$.

Now, $g(\theta)$ is a priori zero in $B \otimes_A K$. But, since B is torsion-free as an A-module, this shows that $g(\theta) = 0$ in B. Thus, g(t) is in the kernel of $A[t] \to B$.

Suppose that $h \in A[t]$ with $h(\theta) = 0$. Then g(t)|h(t) in K[t], say h(t) = g(t)p(t). Using Gauss's Lemma again (or just writing out the division algorithm), $p(t) \in A[t]$. So g(t)|h(t) in A[t].

We have now shown that $g(\theta) = 0$ and, if $h(\theta) = 0$ then g(t)|h(t). So the kernel of $A[t] \to B$ is (g(t)).

We have now shown that there is a well defined injective map $A[t]/g(t) \to B$. Translating directly into geometry, we get a **dominant** map $Y \to Z(g)$. (Dominant means "has dense image".) But B is a finitely generated A-module, so it is also a finitely generated A[t]-module, and we thus know that the map $Y \to X \times \mathbb{A}^1$ has closed image. We conclude that Z(g) is the image of Y.