
OPTIONAL PROBLEM SET – THE NOETHERIAN PROPERTY AND THE

HILBERT BASIS THEOREM

This problem set is optional for you: If you are feeling rusty on Noetherianness, and the Hilbert
basis theorem, work through whatever parts aren’t obvious to you. I’ll be glad to grade it for
anyone who would like me to.

Let R be a commutative ring. We define the following nine properties of R, which we will
then show are all equivalent. If R has any (and hence all) of these properties, we define R to be
noetherian .

1(a) For any chain I1 ⊆ I2 ⊆ I3 ⊆ · · · of ideals in R, we have Ir = Ir+1 for all sufficiently large
r.

1(b) Every ideal I of R is finitely generated.
1(c) For any set X of ideals in R, there is an element I ∈ X which is not contained in any other

element of X .
2(a) For any n ≥ 0 and any chain M1 ⊆ M2 ⊆ M3 ⊆ · · · of submodules of Rn, we have

Mr = Mr+1 for all sufficiently large r.
2(b) For any n ≥ 0, every submodule M of Rn is finitely generated.
2(c) For any set X of submodules of Rn, there is an element M ∈ X which is not contained in

any other element of X .
Let S be a finitely generated R-module:

3(a) For any chain M1 ⊆ M2 ⊆ M3 ⊆ · · · of submodules of S, we have Mr = Mr+1 for all
sufficiently large r.

3(b) Every submodule M of S is finitely generated.
3(c) For any set X of submodules of S, there is an element M ∈ X which is not contained in

any other element of X .

Problem 1 Complete the following exercises for your favorite choice of ∗ among {a, b, c}.
(a) Show that 3(∗) =⇒ 2(∗) =⇒ 1(∗) for ∗ ∈ {a, b, c}.
(b) Show that 2(∗) =⇒ 3(∗) for ∗ ∈ {a, b, c}. . Hint: Take a surjection γ : Rn → M , and take

the preimages of the various objects under γ.
(c) Show that 1(∗) =⇒ (2∗). Hint: Use induction on n. For n > 1, look at the short exact

sequence 0 → R
ι−→ Rn

π−→ Rn−1 → 0. Given M ⊂ Rn, think about the modules M ∩ ι(R) and
π(M). Remark: If R is a field, then 1(b) is obvious, but 2(b) is the first significant theorem in a
linear algebra course. So you should expect to need to do some work here.

Problem 2 Complete the following exercises for your favorite choice of # among {1, 2, 3}.
(a) Show that #(b) =⇒ #(a).
(b) Show that #(c) =⇒ #(b).
(c) Show that #(a) =⇒ #(c).
Remark: The implication #(a) =⇒ #(c) requires the Axiom of Choice, although it does so in

such a simple way that those of you not used to watching for such things may miss it. I believe
(but am not certain), that without AC, the concepts (a), (b) and (c) are logically distinct. The
other parts of this problem set do not require AC.

Problem 3 Show that a quotient ring of a noetherian ring is noetherian. Hint: This is easiest
with the 3(∗) properties.



Problem 4 We will now prove the Hilbert basis theorem: If A is noetherian, then A[t] is
noetherian. Hence, by induction on n, k[t1, t2, . . . , tn] is noetherian. Applying problem 3, this
shows any finitely generated k-algebra is noetherian.

We will be proving A[t] obeys 1(b). Let I be an ideal of A[t]. Define Id to be the set of g ∈ A
such that there is an element of I of the form gtd + fd−1t

d−1 + · · · f1t+ f0.
(a) Show that Id is an ideal of A.
(b) Show that I0 ⊆ I1 ⊆ I2 ⊆ · · · .
Using property 1(a) of A, there there is some ideal I∞ of A so that Ir = Ir+1 = · · · = I∞. Using

property 1(b) of A, take a finite list of generators g1, g2, . . . , gk of I∞. For each gi, choose fi ∈ I
of the form git

r + lower order terms.
(c) Show that I ∩ A · {1, t, t2, . . . , tr−1} is finitely generated as an A-module. (Hint: Property

2(b) is your friend.)
Let h1, h2, . . . , h` be a list of generators for I ∩A · {1, t, t2, . . . , tr−1}.
(d) Show that f1, f2, . . . , fk, h1, h2, . . . , h` generate I as an A[t] module.

Problem 5 This is the original purpose for which Hilbert proved his Basis Theorem. This is
even more optional than the rest of the problem set, but it is really fun.

Let K be a compact group and let ρ : K → GLn(C) be a continuous representation. A polynomial
f in C[x1, . . . , xn] is called invariant if f(x) = f(g · x) for all g ∈ K and all x ∈ Cn. Let S be the
ring of invariant polynomials. We will show that S is finitely generated as a C-algebra.

You will need to know that, in this context, it makes sense to integrate continuous functions over
K. We write such an integral as

∫
g∈K f(g) and define Vol(K) =

∫
g∈K 1. You may use any true

plausible property of such integrals.

Given f ∈ C[x1, . . . , xn], we write f as f0 + f1 + · · · + fN where fd is the sum of the degree d
monomials in f .

(a) Show that f is in S if and only if each fd is in S.
We’ll write Sd for the polynomials in S which are homogenous of degree d.
(b) Let J be the ideal in C[x1, . . . , xn] which is generated by

⋃
d≥1 Sd. Show that there are finitely

many invariants, s1, s2, . . . , sr in
⋃
d≥1 Sd which generate J as an C[x1, . . . , xn] ideal. (This is not

just quoting the Hilbert Basis Theorem, since you have to prove that you can take the generators
in

⋃
d≥1 Sd, but it isn’t much harder.)

(c) Let t ∈ Sd for some d ≥ 1. Show that t is in the S-ideal generated by s1, . . . , sr. (Extremely
explicit hint: By construction, we have t =

∑
sifi for some fi ∈ C[x1, . . . , xn]. Show that t =

1
Vol(K)

∑
si
∫
K fi(g · (x1, . . . , xn)).)

(d) Let t ∈ Sd for some d ≥ 1. Show that t is in the C-algebra generated by the si, . . . , sr.
(Hint: Induction on d.)

Before Hilbert’s result (1890), there was an industry of finding explicit generators for S for various
specific K’s and specific representations of them. Paul Gordan painstakingly worked out the case
K = SU(2) for all representations of K. When he heard that Hilbert could always prove that the
invariant ring was finitely generated, yet could not write down the generators in any example, he
exclaimed “Das ist nicht Mathematik. Das ist Theologie.” (In fairness to Gordan, one should note
that he later became a major proponent and developer of Hilbert’s ideas.)


