PROBLEM SET 11 – DUE NOVEMBER 26

See the course website for policy on collaboration.

This is the final problem set! I want you to have time after break to work on your papers and assimilate all that you have done.

Definitions/Notation A *curve* is a one dimensional variety. If X is a smooth curve and x is a point of X, then $\mathcal{O}_{X,x}$ is a regular local ring, and hence a dvr. We write \mathfrak{m}_x for the maximal ideal of $\mathcal{O}_{X,x}$. An element $u_x \in \mathcal{O}_{X,x}$ is called a *uniformizer at x* if u_x generates \mathfrak{m}_x . We define the **valuation** v_x to be the map Frac $(X) \setminus \{0\} \to \mathbb{Z}$ so that $fu_x^{-v_x(f)}$ is a unit of $\mathcal{O}_{X,x}$. We formally define $v_x(0) = \infty$. For X a smooth curve, we write Frac $\Omega(X)$ for the space of rational 1-forms on X. If $x \in X$ and u_x is a uniformizer at X, and $\omega \in \text{Frac}\Omega(X)$, then $\omega = f du$ for some $f \in \text{Frac}(X)$, and we define $v_x(\omega)$ to be $v_x(f)$; this definition does not depend on the choice of u_x . Note that a function f (respectively, a 1-form ω) is regular at x if and only if $v_x(f)$ (respectively $v_x(\omega)$) is ≥ 0 .

If X and Y are smooth curves, $\pi: Y \to X$ is a finite map, and $\pi(y) = x$, then the **ramification** of π at y is the positive integer e_y defined by either of the following conditions: (1) $v_y(\pi^*(u_x)) = e_y$, where u_x is a uniformizer at x or (2) $e_y = \dim \mathcal{O}_{Y,y}/\mathfrak{m}_x \mathcal{O}_{Y,y}$.

 $\sum_{x\in X} v_x(\omega)$ for any $\omega \in \text{Frac}\Omega(X) \setminus \{0\}$. The genus is always a nonnegative integer, but we don't If X is a smooth projective curve, the **genus** of X, written g_X , is defined by $2g_X - 2 =$ have the tools to prove that yet. The **Riemann-Hurwitz formula** states that, in characteristic zero, we have

$$
2g_Y - 2 = (\deg \pi)(2g_X - 2) + \sum_{y \in Y} (e_y - 1).
$$

We recall the definition of the **residue** of a 1-form from the previous problem set: If X is a smooth curve, x is a point of X, the function u_x is a uniformizer at x and ω is a rational 1-form on X, then $res_x\omega$ is the unique constant a_{-1} so that ω is of the form

$$
\omega = \frac{a_{-N}du_x}{u_x^N} + \dots + \frac{a_{-2}du_x}{u_x^2} + \frac{a_{-1}du_x}{u_x} + \eta
$$

for η regular at x.

Problem 1 In the previous problem set, we constructed the *hyperelliptic curve*: A smooth projective curve covered by the two affine curves

$$
H_0 = \{(x, y) : y^2 = a_{2h}x^{2h} + a_{2h-1}x^{2h-1} + \dots + a_1h + a_0\}
$$

\n
$$
H_{\infty} = \{(u, v) : v^2 = a_{2h}u^{2h} + a_{2h-1}u^{2h-1} + \dots + a_1u + a_0\}
$$

overlapping along $H_0 \setminus \{x = 0\} \cong H_\infty \setminus \{u = 0\}.$ I remind you that the isomorphism between these charts is given by $u = x^{-1}$, $v = x^{-h}y$.

Compute the dimension (as a k vector space) of the cokernel of the map

$$
\partial: \mathcal{O}_{H_0} \oplus \mathcal{O}_{H_{\infty}} \longrightarrow \mathcal{O}_{H_0 \cap H_{\infty}} \text{ where } \partial(f, g) = f|_{H_0 \cap H_{\infty}} - g|_{H_0 \cap H_{\infty}}.
$$

Problem 2 Let $F(x, y, z)$ be a nonzero homogenous equation of degree d. Let $X \subset \mathbb{P}^2$ be the curve $F = 0$, and assume that X is smooth. Assume that $F = 0$ is transverse to $z = 0$ and $(\partial F/\partial x) = 0$, and that $\{F = \partial F/\partial x = z = 0\} \subset \mathbb{P}^2$ is empty.

(a) Let ω be the 1-form $d(x/z)$ on \mathbb{P}^2 . Show that the restriction of ω to X has double poles (i.e. $v(\omega) = -1$) at the d points $X \cap \{z = 0\}$ and no other poles.

(b) Show that ω has simple zeros (i.e. $v(\omega) = 1$) at the $d(d-1)$ points $F = \partial F/\partial x = 0$, and no other zeroes.

- (c) Compute the genus of X.
- (d) Show that, for any degree $d-3$ polynomial $H(x, y, z)$, the 1-form $\omega \frac{z^2 H}{\partial F/\partial x}$ is regular on X.

Problem 3 Show that, if ω is a rational 1-form on \mathbb{P}^1 , then

$$
\sum_{x \in X} \text{res}_x \omega = 0.
$$

(Hint: partial fraction decomposition.)

Problem 4 In this problem, you may assume that the genus of any curve is a nonnegative integer.

(a) Let k have characteristic zero. Let X be a smooth projective curve and let $\pi: X \to \mathbb{P}^1$ be a map which is unramified over $\mathbb{P}^1 \setminus \{\infty\}$. Show that $g_X = 0$ and $\deg \pi = 1$.

(b) Show that problem (a) is false in characteristic p, by showing that the map $t \mapsto t^p - t$ from $\mathbb{A}^1 \to \mathbb{A}^1$ extends to a degree p map $\mathbb{P}^1 \to \mathbb{P}^1$ which is unramified above $\mathbb{P}^1 \setminus {\infty}$.

Problem 5 Let X and Y be smooth irreducible varieties of dimension d and let $\pi: Y \to X$ be a finite separable map of degree n. In this problem, we will define a **trace map** Tr from rational 1-forms on Y to rational 1-forms on X .

Let ω be a 1-form on Y, which we can also consider as a regular function on TY. Let Tr ω be the rational function on TX defined by the trace map from $\text{Frac}(TY)$ to $\text{Frac}(TX)$.

We will say that π is **unramified** over a point $x \in X$ if, for all $y \in \pi^{-1}(x)$, the maps $\pi_* : T_y Y \to T_y Y$ T_xX are isomorphisms. (When dim $Y = \dim X = 1$, this is the same as all ramification degrees being 1.) We showed in class that there is a nonempty open U in X over which π is unramified.

(a) Show that TY and TX are smooth. Show that $\pi_* : TY \to TX$ is unramified over TU.

(b) Show that $Tr \omega$ is regular on TU , and is a 1-form. (Hint: Problem 2, Problem Set 10.)

(c) Too many abstract definitions! Let k have characteristic $\neq 2$, let X and Y be \mathbb{P}^1 with coordinates u and v respectively, and let $\pi(v) = v^2$. Show that $\text{Tr} dv/v = du/u$. (No, there should NOT be a coefficient of 2 or 1/2.)

(d) Let $f \in Frac(Y)$ and let $\omega \in Frac \Omega(X)$. Show that $Tr(f\pi^*\omega) = Tr(f)\omega$ where $Tr(f)$ is the trace map $\text{Frac}(Y) \to \text{Frac}(X)$. Hint for parts (d) and (e): Since TX is irreducible, it is enough to verify this equality on TU .

(e) Let $g \in Frac(Y)$. Show that $Tr(dg) = d Tr(g)$ where, on the right, Tr is the trace map $Frac(Y) \rightarrow Frac(X)$.

(f) Let k have characteristic zero and let dim $X = \dim Y = 1$. Let $\eta \in \text{Frac}\Omega Y$. Show that, for $x \in X$,

$$
\mathrm{res}_x \eta = \sum_{y \in \pi^{-1}(x)} \mathrm{res}_x \omega.
$$

Here the sum is **not** taken with multiplicity. Hint: choose a uniformizer t at x. Show that you can write ω in the form $f\pi^*(dt/t) + dg$ with f regular at z, and use parts (e) and (f).

Remark: Parts (b) and (f) of this problem are short of the full truth. In part (b), if ω is regular on Y then $\text{Tr}\,\omega$ is regular on all of X, not just U. It is hard to find a reference for this; see the discussion at http://mathoverflow.net/questions/167656. In particular, Zannier A note on traces of differential forms (1999) claims to provide an elementary proof when X is normal; but the result is not true in that generality as de Jong and Starr Erratum: Cubic fourfolds and spaces of rational curves (2008) point out. I think that Zannier's proof is correct if we assume that X is smooth. Part (f) holds in any characteristic, not just 0. The standard reference is Serre, *Algebraic* Groups and Class Fields, Chapter II.13.