Problem Set 8 – due November 5

See the course website for policy on collaboration.

Definitions/Notation Some more definitions regarding Grassmannians: If V has a chosen basis e_1, \ldots, e_n and we have $v_1 \wedge \cdots \wedge v_d = \sum_{1 < i_1 < \cdots < i_d < n} p_{i_1 i_2 \cdots i_d} e_{i_1} \wedge e_{i_2} \wedge \cdots \wedge e_{i_d}$, then we call the $\binom{n}{d}$ numbers $p_{i_1 i_2 \cdots i_d}$ the **Plücker coordinates** of $\operatorname{Span}_k(v_1, \ldots, v_d)$. If we choose a decomposition of V as $A \oplus B$, where dim A = d, then get embedding $s : \operatorname{Hom}(A, B) \hookrightarrow G(d, V)$, so that L(s(f)) is the graph of f. This is a dense open subset of G(d, V), isomorphic to $\mathbb{A}^{d(\dim V - d)}$. We'll call this a **Schubert chart** (this is not standard terminology).

If I is a graded radical ideal in $k[x_1, \ldots, x_n]$, with corresponding projective variety $X \subset \mathbb{P}^{n-1}$, we define the **Hilbert function** of X by $h_X^{\text{func}}(t) = \dim_k k[x_1, \ldots, x_n]_t/I_t$. We define the Hilbert polynomial $h_X^{\text{poly}}(t)$ to be the unique polynomial such that $h_X^{\text{poly}}(t) = h_X^{\text{func}}(t)$ for $t \gg 0$. We showed that h(t) has degree dim X and defined the **degree** of X is the integer deg X such that the leading term of h(t) is $\frac{\deg X}{(\dim X)!} t^{\dim X}$.

Problem 1 Let W be the 2-dimensional subspace of k^5 spanned by the rows of

$$\begin{pmatrix} 1 & 0 & 2 & 3 & 5 \\ 0 & 1 & 7 & 11 & 13 \end{pmatrix}$$

(a) Compute the Plücker coordinates of W. (That is to say, the $\binom{5}{2}$ numbers p_{12} , p_{13} , p_{14} , p_{15} , p_{23} , p_{24} , p_{25} , p_{34} , p_{35} , p_{45} .)

(b) Let W^{\perp} be $\{\vec{x}: \vec{w} \cdot \vec{x} = 0 \text{ for all } \vec{w} \in W\}$. (Here \cdot is the dot product.) Find a basis of W^{\perp} .

(c) Compute the $\binom{5}{3}$ Plücker coordinates of W^{\perp} : (That is to say, the $\binom{5}{3}$ numbers p_{123} , p_{124} , p_{125} , p_{134} , p_{135} , p_{145} , p_{234} , p_{235} , p_{245} , p_{345} .)

Problem 2.(a) For $W \subset k^n$, let W^{\perp} be $\{\vec{x} : \vec{w} \cdot \vec{x} = 0 \text{ for all } \vec{w} \in W\}$. (Again, \cdot is the dot product.) Show that the correspondence $W \mapsto W^{\perp}$ is a regular map $G(d, k^n) \to G(n - d, k^n)$.

(b) Find a formula expressing the Plücker coordinates of W^{\perp} in terms of the Plücker coordinates of W. (The formula I am thinking of is extremely explicit and fairly simple.)

Problem 3 Let f(w, x, y, z) and g(w, x, y, z) be relatively prime nonzero homogenous polynomials of degrees a and b. Compute the Hilbert polynomial of Z(f, g) in \mathbb{P}^3 .

Problem 4 Let X be $\mathbb{P}^1 \times \mathbb{P}^2$ embedded into \mathbb{P}^5 by the Segre map $(p:q) \times (r:s:t) \mapsto (pr: ps:pt:qr:qs:qt)$. Compute the Hilbert polynomial and degree of X in \mathbb{P}^5 . Hint: It is easier and more useful to describe the quotient $k[x_1, x_2, x_3, x_4, x_5, x_6]/I$ than to give generators for I.

Problem 5 Let C be a conic in \mathbb{P}^2 and let p_1 , p_2 , p_3 , p_4 , p_5 and p_6 be 6 distinct points on C. We write L_{ij} for the line through p_i and p_j , and write λ_{ij} for a linear equation defining L_{ij} . In this problem we will use Bezout's theorem to prove:

Pascal's Theorem: The three points $L_{12} \cap L_{45}$, $L_{23} \cap L_{56}$ and $L_{34} \cap L_{16}$ are collinear.

(a) Show there is a constant $c \in k$ such that $\lambda_{12}\lambda_{34}\lambda_{56} + c\lambda_{23}\lambda_{34}\lambda_{56}$ vanishes at 7 points of C.

- (b) Define $E = Z(\lambda_{12}\lambda_{34}\lambda_{56} + c\lambda_{23}\lambda_{34}\lambda_{56})$. Show that $E = C \cup M$ for some line M.
- (c) Show that M passes through the points $L_{12} \cap L_{45}$, $L_{23} \cap L_{56}$ and $L_{34} \cap L_{16}$.

This was a short problem set. How about taking some of the extra time to read/think for your final paper?