Problem Set 9 – Due November 12

See the course website for policy on collaboration.

Definitions/Notation Let V be a finite dimensional k vector space, X a Zariski closed subvariety of V and x a point of X. The **Zariski tangent space to** X **at** x, denoted T_xX , is the subspace of V consisting of those \vec{v} such that $\frac{d}{dt}f(x+t\vec{v}) = 0$ for all $f \in I(X)$. It is enough to check this condition for a list of generators of I(X). The **Zariski cotangent space to** X **at** x, denoted T_x^*X , is the dual vector space, a quotient of V^* . Letting \mathfrak{m}_x be the maximal ideal of \mathcal{O}_X at x, we have a natural isomorphism $\mathfrak{m}_x/\mathfrak{m}_x^2 \cong T_x^*X$.

We use this definition in nonreduced rings as well: For a commutative ring A and a maximal ideal \mathfrak{m} of A, the Zariski cotangent space of A at \mathfrak{m} is $\mathfrak{m}/\mathfrak{m}^2$, an A/\mathfrak{m} vector space, and the Zariski tangent space is the A/\mathfrak{m} dual.

For X irreducible, we say that X is **nonsingular** at x if dim $T_x X = \dim X$. We also say X is **regular**¹ or **smooth** at x. One can check that the property of being nonsingular at x is local, so we define a quasi-projective variety X to be nonsingular at x if some (equivalently any) open affine subset of X is nonsingular at x.

Let V be a finite dimensional k vector space and X a Zariski closed subvariety of V. We write A for the coordinate ring of X. The **tangent bundle** TX to X is the subvariety

$$\left\{ (x, \vec{v}) : f(x) = 0 \text{ and } \frac{d}{dt} f(x + t\vec{v}) = 0 \ \forall f \in I(X) \right\} \subset V \times V.$$

A vector field on X is a regular section: $\sigma : X \to TX$ of the projection $TX \to X$. The Kähler differentials Ω^1_X are the regular functions on TX which are linear functions on each tangent space. Ω^1_X is an A-module, generated by symbols df for all $f \in A$, with relations

$$d(u+v) = du + dv, \ d(uv) = udv + vdu, \ da = 0 \text{ for } a \in k.$$

The coordinate ring of TX can be described intrinsically as the A-algebra generated by symbols df with the same relations. We have $\Omega^1_X \otimes_A A/\mathfrak{m}_x \cong T^*_x X$.

Problem 1 Check that the subvariety $\{(w : x : y : z) : wy = x^2, xz = y^2, wz = xy\}$ of \mathbb{P}^3 is nonsingular.

Problem 2 Compute the Zariski tangent spaces to the following subvarieties of \mathbb{A}^2 at (0,0):

$$y = 0, y = x^2, y(y - x^2) = 0$$

Problem 3 Let X = MaxSpec A be an affine variety and x a point of X.

(a) Show that $T_x X$ is isomorphic (as a k-vector space) to the set of maps $D: A \to k$ such that D(f+g) = D(f) + D(g), D(fg) = f(x)D(g) + g(x)D(f) and D(a) = 0 for $a \in k$.

(b) Give a bijection between $T_x X$ and the set of k-algebra homomorphisms $A \to k[\epsilon]/\epsilon^2$ such that the composite $A \to k[\epsilon]/\epsilon^2 \to k$ is reduction modulo \mathfrak{m}_x .

(c) Describe the vector space structure on $T_x X$ directly in terms of homomorphisms $A \to k[\epsilon]/\epsilon^2$.

¹As far as I know, "nonsingular" and "smooth" are always synonyms. In the context of finitely generated algebras over a perfect field, they is also equivalent to "regular". In general, "regular" is defined in more settings. For example, \mathbb{Z} is regular at a prime p, because \mathbb{Z} has Krull dimension 1 and $(p\mathbb{Z})/(p\mathbb{Z})^2$ is a one dimensional $\mathbb{Z}/p\mathbb{Z}$ vector space, but one wouldn't say \mathbb{Z} is smooth. Also, over a non-perfect field, "regular" and "smooth" are both words that make sense, but smooth is more restrictive. For example, let k be a field of characteristic p, and $t \in k$ a non-p-th power. Let $A = k[x]/(y^2 - x^p + t)$ and let \mathfrak{m} be the ideal $\langle x^p - t, y \rangle$. Then A is regular at \mathfrak{m} because $\mathfrak{m}/\mathfrak{m}^2$ is a one dimensional A/\mathfrak{m} vector space and A has dimension 1 (Exercise: check this!). But A is not smooth at \mathfrak{m} , because $\frac{\partial}{\partial x}(y^2 - x^p + t)$ and $\frac{\partial}{\partial y}(y^2 - x^p + t)$ both vanish in the field A/\mathfrak{m} .

Problem 4 Let X = MaxSpec A be an irreducible affine variety of dimension d and x a point of X. Suppose that x is a *singular* point of x. Let f_1, f_2, \ldots, f_d be regular functions on X vanishing at x. Show that the Zariski tangent space to $A/\langle f_1, f_2, \ldots, f_d \rangle$ at \mathfrak{m}_x is nonzero. Conclude that $A/\langle f_1, f_2, \ldots, f_d \rangle$ is not reduced.

Problem 5 Let X = MaxSpec A and Y = MaxSpec B be affine algebraic varieties and $\phi : X \to Y$ a regular map.

(a) Let $x \in X$ and let $y = \phi(x)$. Show that $\phi^* \mathfrak{m}_y \subseteq \mathfrak{m}_x$ and $\phi^* \mathfrak{m}_y^2 \subseteq \mathfrak{m}_x^2$, so we get a linear map $\phi^* : T_y^* Y \to T_x^* X$. We define ϕ_* to be the dual map.

(b) Construct a regular map $\phi_* : TX \to TY$ which descends to $\phi_* : T_xX \to T_{\phi(x)}Y$ for every $x \in X$.

Problem 6 This problem reuses the notations \mathcal{X} , c_{Fermat} , and C_3 from Problem on Problem Set 7. Let L denote the line $\{(u: -u: v: -v)\}$ in $Z(c_{\text{Fermat}})$. Let $[c_{\text{Fermat}}]$ be the point of $\mathbb{P}(C_3)$ corresponding to the Fermat cubic and let [L] be the point of $G(2, k^4)$ corresponding to L.

Check that the equations defining \mathcal{X} cut out [L] as a reduced point of $G(2, k^4)$. (This is also true for the other 26 lines on c_{Fermat}), I'm just trying to contain the computation.) Hint: I recommend first passing to a Schubert chart on $G(2, k^4)$ and the cotangent space.

Problem 7 We only defined tangent bundles to affine varieties. The morally right way to define the tangent bundle to a projective variety is by gluing the tangent bundles to affine charts, but we aren't able to glue abstract varieties this term. This problem explores a morally wrong way.

Let W be a finite dimensional vector space. We will be working with subspaces of $\mathbb{P}(W \oplus \bigwedge^2 W)$, and will write $(w : \eta)$ for an element of this space, where $w \in W$ and $\eta \in \bigwedge^2 W$. Define

$$T\mathbb{P}(W) = \{ (w:\eta) : w \neq 0, \ w \land \eta = 0 \}.$$

Let $\pi : T\mathbb{P}(W) \to \mathbb{P}(W)$ be the map $(w : \eta) \to w$.

This problem is removed because it is actually false, not just morally wrong. (Or at least I can't prove it is right.) It definitely defines a vector bundle over $\mathbb{P}(W)$, but I don't think that bundle is isomorphic to $T\mathbb{P}(W)$. Given a vector $\vec{w} \in W$, the tangent space $T_{\vec{w}}\mathbb{P}(W)$ is canonically isomorphic to $\operatorname{Hom}(k\vec{w}, W/k\vec{w})$. Given $\bar{w} \in \mathbb{P}(W)$, we can lift \bar{w} to a vector \vec{w} and lift a map $\phi : k\vec{w} \to W/k\vec{w}$ to $\tilde{\phi} : k\vec{w} \to W$. I can then try to define an element of $\bigwedge^2 W$ by $\vec{w} \wedge \tilde{\phi}(\vec{w})$. The wedge product removes the ambiguity in choosing the lift $\tilde{\phi}$. But, if we rescale our choice of \vec{w} by some scalar a, then $\vec{w} \wedge \tilde{\phi}(\vec{w})$ rescales by a^2 , not a, so the class of $(\vec{w}, \vec{w} \wedge \phi(\vec{w}))$ in $\mathbb{P}(W \oplus \bigwedge^2 W)$ is not well defined.

We could fix this by introducing weighted projective spaces, where different coordinates can rescale by different powers. Or we could Veronese embed to $\operatorname{Sym}^2(W) \oplus \bigwedge^2 W$, sending (\bar{w}, ϕ) to $(\bar{w} \otimes \bar{w}, \bar{w} \wedge \tilde{\phi}(\bar{w}))$. But, at this point, what was already a hard problem has become completely out of hand.