
Problem Set 9 – due November 12
See the course website for policy on collaboration.
Definitions/Notation Let V be a finite dimensional k vector space, X a Zariski closed sub-

variety of V and x a point of X. The Zariski tangent space to X at x, denoted TxX, is the
subspace of V consisting of those ~v such that d

dtf(x + t~v) = 0 for all f ∈ I(X). It is enough to
check this condition for a list of generators of I(X). The Zariski cotangent space to X at x,
denoted T ∗

xX, is the dual vector space, a quotient of V ∗. Letting mx be the maximal ideal of OX
at x, we have a natural isomorphism mx/m

2
x
∼= T ∗

xX.
We use this definition in nonreduced rings as well: For a commutative ring A and a maximal

ideal m of A, the Zariski cotangent space of A at m is m/m2, an A/m vector space, and the Zariski
tangent space is the A/m dual.

For X irreducible, we say that X is nonsingular at x if dimTxX = dimX. We also say X is
regular1 or smooth at x. One can check that the property of being nonsingular at x is local, so
we define a quasi-projective variety X to be nonsingular at x if some (equivalently any) open affine
subset of X is nonsingular at x.

Let V be a finite dimensional k vector space and X a Zariski closed subvariety of V . We write
A for the coordinate ring of X. The tangent bundle TX to X is the subvariety{

(x,~v) : f(x) = 0 and
d

dt
f(x+ t~v) = 0 ∀f ∈ I(X)

}
⊂ V × V.

A vector field on X is a regular section: σ : X → TX of the projection TX → X. The Kähler
differentials Ω1

X are the regular functions on TX which are linear functions on each tangent
space. Ω1

X is an A-module, generated by symbols df for all f ∈ A, with relations

d(u+ v) = du+ dv, d(uv) = udv + vdu, da = 0 for a ∈ k.

The coordinate ring of TX can be described intrinsically as the A-algebra generated by symbols
df with the same relations. We have Ω1

X ⊗A A/mx
∼= T ∗

xX.

Problem 1 Check that the subvariety {(w : x : y : z) : wy = x2, xz = y2, wz = xy} of P3 is
nonsingular.

Problem 2 Compute the Zariski tangent spaces to the following subvarieties of A2 at (0, 0):

y = 0, y = x2, y(y − x2) = 0

Problem 3 Let X = MaxSpecA be an affine variety and x a point of X.
(a) Show that TxX is isomorphic (as a k-vector space) to the set of maps D : A → k such that

D(f + g) = D(f) +D(g), D(fg) = f(x)D(g) + g(x)D(f) and D(a) = 0 for a ∈ k.
(b) Give a bijection between TxX and the set of k-algebra homomorphisms A → k[ε]/ε2 such

that the composite A→ k[ε]/ε2 → k is reduction modulo mx.
(c) Describe the vector space structure on TxX directly in terms of homomorphisms A→ k[ε]/ε2.

1As far as I know, “nonsingular” and “smooth” are always synonyms. In the context of finitely generated algebras
over a perfect field, they is also equivalent to “regular”. In general, “regular” is defined in more settings. For example,
Z is regular at a prime p, because Z has Krull dimension 1 and (pZ)/(pZ)2 is a one dimensional Z/pZ vector space,
but one wouldn’t say Z is smooth. Also, over a non-perfect field, “regular” and “smooth” are both words that make
sense, but smooth is more restrictive. For example, let k be a field of characteristic p, and t ∈ k a non-p-th power. Let
A = k[x]/(y2 − xp + t) and let m be the ideal 〈xp − t, y〉. Then A is regular at m because m/m2 is a one dimensional
A/m vector space and A has dimension 1 (Exercise: check this!). But A is not smooth at m, because ∂

∂x
(y2 − xp + t)

and ∂
∂y

(y2 − xp + t) both vanish in the field A/m.



Problem 4 Let X = MaxSpecA be an irreducible affine variety of dimension d and x a point of
X. Suppose that x is a singular point of x. Let f1, f2, . . . , fd be regular functions on X vanishing
at x. Show that the Zariski tangent space to A/〈f1, f2, . . . , fd〉 at mx is nonzero. Conclude that
A/〈f1, f2, . . . , fd〉 is not reduced.

Problem 5 LetX = MaxSpecA and Y = MaxSpecB be affine algebraic varieties and φ : X → Y
a regular map.

(a) Let x ∈ X and let y = φ(x). Show that φ∗my ⊆ mx and φ∗m2
y ⊆ m2

x, so we get a linear map
φ∗ : T ∗

y Y → T ∗
xX. We define φ∗ to be the dual map.

(b) Construct a regular map φ∗ : TX → TY which descends to φ∗ : TxX → Tφ(x)Y for every
x ∈ X.

Problem 6 This problem reuses the notations X , cFermat, and C3 from Problem on Problem
Set 7. Let L denote the line {(u : −u : v : −v)} in Z(cFermat). Let [cFermat] be the point of P(C3)
corresponding to the Fermat cubic and let [L] be the point of G(2, k4) corresponding to L.

Check that the equations defining X cut out [L] as a reduced point of G(2, k4). (This is also true
for the other 26 lines on cFermat), I’m just trying to contain the computation.) Hint: I recommend
first passing to a Schubert chart on G(2, k4) and the cotangent space.

Problem 7 We only defined tangent bundles to affine varieties. The morally right way to define
the tangent bundle to a projective variety is by gluing the tangent bundles to affine charts, but we
aren’t able to glue abstract varieties this term. This problem explores a morally wrong way.

Let W be a finite dimensional vector space. We will be working with subspaces of P(W ⊕
∧2W ),

and will write (w : η) for an element of this space, where w ∈W and η ∈
∧2W . Define

(((((((((((((((((((

TP(W ) = {(w : η) : w 6= 0, w ∧ η = 0}.
Let π : TP(W )→ P(W ) be the map (w : η)→ w.

This problem is removed because it is actually false, not just morally wrong. (Or at least I can’t
prove it is right.) It definitely defines a vector bundle over P(W ), but I don’t think that bundle is
isomorphic to TP(W ). Given a vector ~w ∈W , the tangent space T~wP(W ) is canonically isomorphic
to Hom(k ~w,W/k ~w). Given w̄ ∈ P(W ), we can lift w̄ to a vector ~w and lift a map φ : k ~w →W/k~w

to φ̃ : k ~w → W . I can then try to define an element of
∧2W by ~w ∧ φ̃(~w). The wedge product

removes the ambiguity in choosing the lift φ̃. But, if we rescale our choice of ~w by some scalar
a, then ~w ∧ φ̃(~w) rescales by a2, not a, so the class of (~w, ~w ∧ φ(~w)) in P(W ⊕

∧2W ) is not well
defined.

We could fix this by introducing weighted projective spaces, where different coordinates can
rescale by different powers. Or we could Veronese embed to Sym2(W ) ⊕

∧2W , sending (w̄, φ) to

(~w ⊗ ~w, ~w ∧ φ̃(~w)). But, at this point, what was already a hard problem has become completely
out of hand.


