
An elementary Cech proof of the Riemann-Roch theorem

1. Introduction

The purpose of these notes is to give a proof of the Riemann-Roch theorem, for curves, in a
language which will both appeal to students who have just finished a classical varieties course
(out of, for example, Shafarevich’s book) and will prepare them well for a course on sheaves and
cohomology (for example, as taught from Hartshorne or Vakil’s book). To the first end, I have
made the following expositional choices:

• The proof focuses on concrete computations where possible.
• I use specific open sets, rather than local rings.
• I invoke Noether normalization and Hilbert series where appropriate.

To the second end, I have made the following choices:

• I use language which will extend well1 to a course that discusses sheaf cohomology in depth,
such as H0(O(D)) and H1(O(D)) rather than L(D) and R(D), etcetera.
• I give a Cech-style definition of H1(O(D)).
• I use commutative diagrams and long exact sequences wherever they are informative.

This proof is not original to me. It is the adelic proof due to Weil and popularized in Serre’s
Algebraic Groups and Class Fields, rewritten not to mention adeles. I have chosen to rewrite the
proof because adeles, though beautiful and very important in number theory, are not central in
modern algebraic geometry, and I think the introduction of adeles tends to make students think
the proof is much more technical and abstract than it is.

I am grateful to Jake Levinson for reading an early draft of these notes. The presentation here
is strongly influenced by Serre’s presentation in Chapter II of Algebraic Groups and Class Fields; I
also consulted Ravi Vakil’s notes math.stanford.edu/∼vakil/725/bagsrr.pdf and Dolgachev’s
Lecture 17 at http://www.math.lsa.umich.edu/∼idolga/631.pdf.

2. Terminology

Throughout these notes, X denotes an irreducible smooth projective curve over an algebraically
closed field k. For an open subset U of X, we write OU for the regular functions on U . We write
Frac(X) for the field of meromorphic functions on X, this is FracOU for any nonempty affine
open U ⊂ X. Similarly, we write ΩU for the regular 1-forms on U and we write Frac Ω(X) for
the meromorphic 1-forms. (This last notation is non-standard.) Frac Ω(X) is a one dimensional
Frac(X) vector space, and is equal to ΩU ⊗OU

Frac(X) for any nonempty affine open U in X.
For every point x ∈ X, we write OX,x for the local ring at x; this is a dvr. We write mx for

the maximal ideal of OX,x. We write vx for the valuation Frac(X)× → Z which takes the order
of vanishing at x and define vx(0) = ∞. So OX,x = {f ∈ Frac(X) : vx(f) ≥ 0}. We also define
valuations on Frac Ω(X): If x ∈ X and ω is an nonzero element of Frac Ω(X), choose a uniformizer
ux at X. (Meaning that ux generates mx or, equivalently, that vx(ux) = 1.) Write ω = fdux for
some f ∈ Frac(X). Then we define vx(ω) to be vx(f); it is easy to check this is independent of the
choice of ux.

A divisor on X is a finite formal sum of points of X. We will write a divisor as
∑

x∈X D(x)x,
where D(x) ∈ Z and D(x) is 0 for all but finitely many x. The degree of a divisor, degD is∑

x∈X D(x). Divisors form an abelian group, which we write additively. For two divisors D and
E, we write D ≥ E to indicate that D(x) ≥ E(x) for all x.

1One way in which we are inconsistent with Hartshorne or Vakil’s terminology is that the regular functions on an
affine open U are denoted by OU , not O(U), so that we can distinguish this from O(D) without remembering what
the symbol inside the parentheses denotes. Following this convention, I write O(D)U , not O(D)(U) for sections of
O(D) over U .



For f ∈ Frac(X) \ {0} we define div(f) to be the divisor
∑

x∈X vx(f)x. A divisor of the form
div(f) is called principal . Two divisors D and E are called rationally equivalent if D − E is
principal; we write D ∼ E. For ω ∈ Frac Ω(X)\{0}, we define div(ω) to be the divisor

∑
x∈X vx(ω).

If ω and η are two nonzero meromorphic 1-forms, then ω = fη for some f ∈ Frac(X)\{0}, and thus
div(ω) = div(f) + div(η) and div(ω) ∼ div(η). A divisor of the form div(ω) is called canonical .
We write K to mean an arbitrary canonical divisor; the symbol K will only occur in formulas which
depend only on the rational equivalence class of the divisor being discussed.

For a divisor D, we define

H0(O(D)) = {f ∈ Frac(X) : div(f) +D ≥ 0}
H0(Ω(D)) = {ω ∈ Frac Ω(X) : div(ω) +D ≥ 0} .

Note that, as D gets more positive, these vector spaces grow larger.

3. The Riemann-Roch Theorem

Our main result is:

The Riemann-Roch Theorem. There is a non-negative integer g, called the genus of X, for
which

dimH0(O(D))− dimH0(Ω(−D)) = degD − g + 1.

We can also write this as

dimH0(O(D))− dimH0(O(K −D)) = degD − g + 1.

We observe that this theorem implies two concrete descriptions of g:

Proposition 1. The integer g can be defined by either of the formulas:

dimH0(Ω) = g or deg(K) = 2g − 2.

Proof. Taking D = 0, we have dimH0(O) − dimH0(Ω) = 1 − g, so dimH0(Ω) = g. Adding
together the second equation for D and for K − D, we get 0 = degD + deg(K − D) − 2g + 2 so
degK = 2g − 2. �

In particular, we see from the first formula that g ≥ 0.

4. Approximate Riemann Roch

The aim of this section is to prove the following result, which says that the Riemann-Roch
theorem is correct up to constant error, and point out its corollaries and variants. This part of the
Theorem is due to Riemann by himself.

Approximate Riemann-Roch. We have

dimH0(O(D)) = max(degD, 0) +O(1)

where the constant in the O(1) depends only on the curve X and not the divisor D. If degD <
0, then dimH0(O(D)) = 0, and there are constants M and h (dependent only on X) so that
dimH0(O(D)) = deg(D) + h whenever degD > M .

The claim about H0(O(D)) for degD < 0 is obvious; we include it for symmetry with the highly
nonobvious claim about H0(O(D)) for degD � 0.

We begin with the straightforward observation:

Proposition 2. If D′ = D+ p for some point p of X, then H0(O(D)) is a subspace of H0(O(D′))
and

dimH0(O(D′))/H0(O(D)) = (0 or 1).

We immediately deduce the corollary



Proposition 3. If D′ ≥ D, then

dimH0(O(D)) ≤ dimH0(O(D′)) ≤ dimH0(O(D)) + deg(D′ −D).

In particular, if degD < 0, then H0(O(D)) = 0 (since any nonzero rational function f has
deg div(f) = 0.) So Proposition 3 implies

dimH0(O(D′)) ≤ degD′ + 1

for any D′. We have proved the upper bound in Approximate Riemann-Roch; the rest of this
section proves the lower bound.

Embed X into some projective space. Fix a Noether normalization π : X → P1 of degree n and
let U be the open set X \ π−1(∞). We note that U is the intersection of X with an affine chart
in PN , so U is affine. Let D∞ be the divisor which is supported on the points π−1(∞) and where
x ∈ π−1(∞) is counted with multiplicity equal to the ramification of π at x. Let the embedding
X ↪→ PN have degree n, so π has degree n and degD∞ = deg π = n.

Our first result is that Approximate Riemann-Roch holds when D is a multiple of D∞.

Proposition 4. We have

dimH0(O(tD∞)) = tn+O(1) for t ≥ 0.

Moreover, there is a constant h such that

dimH0(O(tD∞)) = tn+ h for t� 0.

Here the constant h, and the implicit constant in the O(1), depend on X and the choice of divisor
D∞, but not on t.

Remark. Morally, the right proof is thatH0(O(tD∞)) is roughly the degree t part of the homogenous
coordinate ring of X, so this should follow from the result that Hilbert polynomials exist and have
the stated leading term. However, H0(O(tD∞)) is only the degree t part of the homogenous
coordinate ring for t sufficiently large, and we don’t have the tools to prove that fact efficiently.
Therefore, we give a direct proof of the proposition instead.

Proof. As pointed out above, we have the easy bound dimH0(O(tD∞)) ≤ deg(tD∞) + 1 = tn+ 1.
So our goal is to prove a lower bound. Notice that

⋃
t≥0H

0(O(tD∞)) = OU .

Write k[z] for the regular functions on P1 \ {∞}. The Noether normalization π makes OU into
a finite k[z]-module of rank n. Let f1, f2, . . . , fn be elements of OU , linearly independent over
Frac k[z]. (Since all finitely generated torsion free modules over a PID are free, we could choose fi
to be a k[z] basis of OU , but this isn’t necessary for our present purposes.) Choose s large enough
that all the fi lie in H0(O(sD∞)). Then, for t ≥ s, all the functions

f1,zf1,. . . ,z
t−sf1,

f2,zf2,. . . ,z
t−sf2,

...
fn,zfn,. . . ,z

t−sfn

are in H0(O(tD∞)) and are linearly independent over k. So

dimH0(O(tD∞)) ≥ (t− s+ 1)n = tn−O(1).

This proves the first claim.
For the second claim, note that Proposition (2) implies that dimH0(O(tD∞)) − tn is a weakly

decreasing function of t. A weakly decreasing bounded integer function is eventually constant. �

We now prove the following consequence of Proposition 4:

Proposition 5. There is an absolute constant C (dependent only on the curve X) such that any
divisor D is rationally equivalent to a divisor of the form tD∞ + E where

∑
x∈X |E(x)| ≤ C.



Remark. We can think of this as saying that the group of divisors modulo rational equivalence is
roughly the product of Z and something finite dimensional. This can be made very precise: Write
Pic(X) for the group of divisors modulo rational equivalence. We have a short exact sequence

0 → Pic0(X) → Pic(X)
deg−→ Z → 0, where Pic0(X) is defined as the kernel of the degree map.

(This sequence is non-canonically split, because any sequence of abelian groups of the form 0 →
A→ B → Z→ 0 is split.) There is a g-dimensional abelian algebraic group2 J called the Jacobian
of X such that, as abstract groups, J ∼= Pic0(X). The Jacobian was implicit in the work of Abel-
Jacobi in the complex case and was first constructed as a complex algebraic variety by Riemann.
Weil reinvented the entire foundations of algebraic geometry in order to build the Jacobian over
a general field. Even with modern tools, it is still quite challenging. My favorite reference for
the modern approach is Kleiman’s article The Picard Scheme in Fundamental algebraic geometry:
Grothendiecks FGA explained.

Proof. We can write any divisor D as D+−D−, where D+ and D− are ≥ 0. So it suffices to prove
the claim in the case that D ≥ 0, and we assume this from now on. (Our constant C for general D
will be twice the C which we obtain under the hypothesis D ≥ 0.)

Moreover, we can decompose D as D′+D′′ where D′ is supported on U and D′′ is supported on
π−1(∞). It is enough to prove the claim for D′ and D′′.

Let B be the constant for which dimH0(tD∞) ≥ tn − B (using Proposition 4). Choose3 t =

d(degD′ + B + 1)/ne so that tn − B > degD′. Note that degD′ = dim
⊕

x∈U OX,x/m
D′(x)
x , so

we have forced dimH0(tD∞) to be strictly greater than dim
⊕

x∈U OX,x/m
D′(x)
x . So there is a

nonzero function f ∈ H0(O(tD∞)) which reduces to 0 modulo m
D′(x)
x for all x ∈ U . In other words,

div(f)−D′ is positive on U . Therefore, div(f)−D′ + tD∞ ≥ 0 everywhere.
Write D′ − div(f) = tD∞ + E′. Then D′ ∼ tD∞ + E′ and we have shown that E′ ≤ 0. But we

also have

degE′ = degD′ − nt = degD′ − nd(degD′ +B + 1)/ne ≥ −n(B + 2).

So we have proven that D′ can be approximated in the required way with C = n(B + 2).
We now must deal with D′′. Let D0 = π−1(0), again computed with multiplicity. Repeating

the previous arguments shows that there is an absolute constant C ′′ such that D′′ is rationally
equivalent to a divisor of the form tD0 + E′′ with

∑
x∈X |E′′(x)| ≤ C ′′. But D0 ∼ D∞, so this

proves the result. �

We now prove Approximate Riemann-Roch.

Proof. For any divisor D, we can have D ∼ tD∞+E where
∑

x∈X |E(x)| is bounded by an absolute

constant C. Since dimH0(O(D)) depends only on the rational equivalence class of D, it is enough
to prove the result for divisors of the form tD∞ + E.

The result for tD∞ is Proposition 4. Applying Proposition 3 twice, we see that changing from
D = tD∞ to D = tD∞ + E can only change dimH0(O(D))− degD by

∑
x∈X |E(x)| ≤ C. �

We prove one corollary that we will need in the next section:

Proposition 6. Let z be a point of X and let x1, x2, . . . , xN be finitely many other points of X.
For each xi, let gi be an element of Frac(X) and let di be an integer. Then there is an element
f ∈ Frac(X) whose only poles are in {z, x1, x2, . . . , xN} and such that vxi(f − gi) ≥ di.

2There is a common convention in the theory of algebraic groups that an algebraic group is by definition affine. J
is not affine, but rather projective. J is an algebraic group in the sense that it is an algebraic variety and there is a
regular map µ : J × J → J which gives J the structure of an abelian group.

3The notation dxe means to round x up.



Proof. Let ei = vxi(gi). The conditions on f become more restrictive as di increases, so we may
as well replace di by max(di, ei), so we can assume that di ≥ ei for all i. Our proof will be by
induction on

∑
(di − ei).

If di = ei for all i, then we may take f = 0. So assume that di > ei for some i; without loss of
generality, take dN > eN . Let E be the divisor

∑
i eixi and let E′ = E − xN . If we choose t large

enough, then Approximate Riemann-Roch shows that dimH0(O(tz+E)) = dimH0(O(tz+E′))+1.
So there is a function h ∈ dimH0(O(tz + E)) with a pole of order precisely −eN at xN . We can
choose a scalar c such that the leading terms of gN and ch match. Replacing gi by g′i := gi − ch
and E by E′, we can inductively find f ′ ∈ H0(O(tz+E′)) with vxi(f

′−gi+ ch) ≥ di for all i. Then
take f = f ′ + ch.

�

5. Cohomology

For W any nonempty open subset of X, we define

O(D)W = {f ∈ Frac(X) : vx(f) +D(x) ≥ 0 ∀x∈W }.
So H0(O(D)) = O(D)X . We define Ω(D)W similarly.

Let X = U ∪ V for opens U and V , with U and V neither equal to ∅ nor X. Then H0(O(D)) =
O(D)U ∩ O(D)V , where the intersection can be viewed as taking place either in Frac(X) or, more
usefully for the moment, in O(D)U∩V . In other words, we have an exact sequence:

0→ H0(O(D))→ O(D)U ⊕O(D)V
∂−→ O(D)U∩V

where ∂(f, g) = f − g. We define H1(O(D);U, V ) to be the cokernel of ∂, so we have an exact
sequence

0→ H0(O(D))→ O(D)U ⊕O(D)V
∂−→ O(D)U∩V → H1(O(D);U, V )→ 0 (∗)

H0(O(D)) is a globally defined concept, although we might use an open cover to compute it.
The following lemma tells us that the same is true of H1.

Proposition 7. Let X = U ∪ V be an open cover with U , V 6= ∅, X. Let p be a point of U ∩ V
and let U ′ = U \ p. Then the obvious map H1(O(D);U, V )→ H1(O(D);U ′, V ) is an isomorphism.

By the obvious map, we mean the map on cokernels induced by the restriction maps O(D)U →
O(D)U ′ and O(D)U∩V → O(D)U ′∩V .

Repeatedly using Proposition 7 gives us natural isomorphisms between H1(O(D);U1, V1) and
H1(O(D);U2, V2) for any open covers (U1, V1) and (U2, V2) as above. We will therefore refer to
H1(O(D)) without regard to a choice of cover.

Remark. If one traces through the isomorphisms carefully, one finds that the natural isomorphism
H1(O(D);U, V )→ H1(O(D);V,U) sends the class of f ∈ O(D)U∩V to the class of −f ∈ O(D)V ∩U .

Proof. Since there is at least one point in X \ U , Proposition 6 tells us that there are regular
functions on U ′, and on U ′ ∩ V , whose Laurent series at p starts with any given specified terms.
Writing up for a uniformizer at p, we deduce that

O(D)U ′/O(D)U ∼= O(D)U ′∩V /O(D)U∩V ∼= Frac(X)/uD(p)
p OX,p (†)

We have a commutative diagram with exact rows

0 // O(D)U ⊕O(D)V //

��

O(D)U ′ ⊕O(D)V //

��

O(D)U ′/O(D)U //

��

0

0 // O(D)U∩V // O(D)U ′∩V // O(D)U ′∩V /O(D)U∩V // 0



From equation (†), the third vertical map is an isomorphism.
Hence, by the snake lemma, we have a long exact sequence

0→ H0(O(D))→ H0(O(D))→ 0→ H1(O(D);U, V )→ H1(O(D);U ′, V )→ 0→ 0. �

Now that we know H1 is well defined, we begin investigating its key properties.

Proposition 8. As a k-vector space, H1(O(D)) is finite dimensional.

Proof. Take a Noether normalization π : X → P1 as in the preceding section. We will compute
H1 with respect to the open cover U = π−1(P1 \ {∞}) and V = π−1(P1 \ {0}). Then O(D)U∩V is
a free k[z, z−1]-module of rank n and O(D)U and O(D)V are k[z] and k[z−1] submodules of rank
n. Identifying O(D)U∩V with k[z, z−1]⊕n, we have O(D)U ⊃ zMk[z] and O(D)V ⊃ z−Mk[z−1] for
some M , so dimH1(O(D)) ≤ n(2M + 1). �

Proposition 9. If D and E are rationally equivalent, then H1(O(D)) ∼= H1(O(E)). The isomor-
phism is natural once we choose a rational function f with divisor D − E.

Proof. Let E = D + div(f). Multiplication by f induces compatible maps O(D)W → O(E)W for
all open sets W and, in particular, for W = U , V and U ∩ V . So multiplication by f induces a
map on the cokernel in equation (∗) �

The next proposition will be key in our future arguments, and in much analysis of H0 and H1.

Proposition 10. Let D be a divisor, p a point of X and D′ = D + p. Then we have a long exact
sequence:

0→ H0(O(D))→ H0(O(D′))→ k → H1(O(D))→ H1(O(D′))→ 0.

Remark. The 1-dimensional k vector space in the middle of the sequence is canonically (TpX)⊗D(p)+1.

Proof. Since H1 is defined independent of the choice of cover, we may assume that p ∈ U \ V .
So O(D′)U/O(D)U ∼= k and O(D)V ∼= O(D′)V and O(D)U∩V ∼= O(D′)U∩V . We can piece these
together into a commutative diagram with exact rows:

0 // O(D)U ⊕O(D)V //

��

O(D′)U ⊕O(D′)V //

��

k //

��

0

0 // O(D)U∩V // O(D′)U∩V // 0 // 0

Applying the snake lemma gives the conclusion. �

Remark. A good exercise is to repeat this proof on the hypothesis that p ∈ U ∩V , and thus remove
the use of Proposition 7.

We can now prove:

Homological Riemann-Roch. There is a non-negative integer g for which

dimH0(O(D))− dimH1(O(D)) = degD − g + 1.

Proof. The equation makes sense by Proposition 8. Take g = dimH1(O). Then the equality holds
for O, and Proposition 10 shows that both sides increase by 1 if we change D to D + p, so the
result holds for any D. �

Remark. If one has two vector spaces V and W and a map φ : V →W , it is usually easier to prove
a theorem about dim Ker(φ)−dim CoKer(φ) then to study Ker(φ) or CoKer(φ) separately. This is
obviously true if V and W are finite dimensional, as dim Ker(φ)−dim CoKer(φ) = dimV −dimW ,
but it is a good guideline when V and W are infinite dimensional as well.

Combining Approximate Riemann Roch and Homological Riemann Roch, we deduce:



Proposition 11. We have

dimH1(O(D)) = max(−degD, 0) +O(1)

where the constant in the O(1) depends only on the curve X and not the divisor D.

We will now be done if we can prove dimH1(O(D)) = dimH0(Ω(−D)). This will be the goal of
the following sections.

6. The Serre duality pairing

The Serre duality theorem states that the vector spaces H1(O(D)) and H0(Ω(−D)) are naturally
dual. (And thus, replacing D by K −D, that H0(O(D)) and H1(Ω(−D)) are naturally dual.) In
this section, we will define a bilinear pairing 〈 , 〉 : H1(O(D)) × H0(Ω(−D)) → k. In the next
section, we will prove that it is a perfect pairing.

To begin with, consider the case of H1(Ω), which should be dual to the one dimensional vector
space H0(O). We will not be able to prove that dimH1(Ω) = 1 until the same moment that we
prove Serre duality in full, but we can construct a linear map

∫
: H1(Ω)→ k. In order to describe

this linear map, we first review the properties of residues of 1-forms on smooth curves.
Let x be a point of X and choose a uniformizer u in OX,x. Let ω be a rational 1-form on X.

Then we can write ω in the form

ω =
(a−N
uN

+
a−N+1

uN−1
+ · · ·+ a1

u
+ f

)
du

for ai various elements of the ground field and f ∈ OX,x. We define the residue of ω at x, denoted
resx(ω), to be a−1.

We will need the following properties of residues, whose proofs are surprisingly difficult.

Proposition 12. The residue of ω at x does not depend on the choice of uniformizer u.

Proposition 13. For any ω ∈ Frac Ω(X), we have
∑

x∈X resxω = 0. This sum makes sense
because all but finitely many terms are zero.

Accepting these results for now, we will define a map
∫

: H1(Ω) → k. Let (U, V ) be an open
cover of X and let ω be a 1-form on U ∩ V , so Ω represents a class [ω] in H1(Ω;U, V ). Define∫

ω =
∑

x∈X\U

resxω.

In order for this definition to make sense, we need to check two things:

Proposition 14. This definition depends only on the class of ω in H1(Ω;U, V ).

Proof. In other words, we must check that
∫
α − β, where α ∈ ΩU and β ∈ ΩV , is 0. It is

clearly enough to check that
∫
α and

∫
β are 0. For α ∈ ΩU , all the poles of α are in X \ U , so∑

x∈X\U resxω =
∑

x∈X resxω = 0 by Proposition 13. For β ∈ ΩV , there are no poles of β in X \U
(since X \ U ⊂ V ) so the sum is obviously zero. �

Proposition 15. If (U, V ) and (U ′, V ′) are two open covers of X, with U ′ ⊂ U and V ′ ⊂ V , and
ω is a 1-form on U ∩ V , then

∫
ω is the same whether computed with respect to (U, V ) or (U ′, V ′).

Proof. The 1-form ω doesn’t have any poles at the points of (X \ U ′) \ (X \ U). �

Now, if f ∈ H0(O(D)) and ω ∈ Ω(−D)U∩V , then fω is clearly in ΩU∩V . We define the pairing
〈 , 〉 : H0(O(D)) × H1(Ω(−D)) → k by 〈f, [ω]〉 =

∫
fω. Similarly, if f ∈ O(D)U∩V and ω ∈

Ω(−D)U∩V , then 〈[f ], ω〉 =
∫
fω defines a pairing between H1(O(D)) and H0(Ω(−D)). We can

now state:



Serre Duality. The pairings 〈 , 〉 : H0(O(D)) × H1(Ω(−D)) → k and 〈 , 〉 : H1(O(D)) ×
H0(Ω(−D)) → k are perfect pairings. As a corollary, dimH0(O(D)) = dimH1(Ω(−D)) =
dimH1(O(K −D)) and dimH1(O(D)) = dimH0(Ω(−D)) = dimH0(O(K −D)).

We prove Serre duality in the next section. For now, we discuss Propositions 12 and 13.

Analytic proof of Proposition 12. Consider X as a complex manifold and let γ be a little circle
around x. Then resxω = 1

2πi

∮
γ ω. �

Analytic proof of Proposition 13. Let x1, x2, . . . , xr be the points of X where ω has poles. Let Di

be a little disc around xi. We want to show that
∑

i
1

2πi

∮
∂Di

ω = 0. Defining U = X \
⋃
Di, we

want to show that
∮
∂U ω = 0. Since ω is holomorphic on U , this is true. If your complex analysis

course only proved Cauchy’s integral theorem in C rather than on a Riemann surface, we can also
use Stokes’ theorem: If f is analytic then d(f(z)dz) = 0, so dω = 0. �

The remainder of this section aims to remove the analysis from these proofs; the reader who likes
analysis and cares only about k = C can skip the rest of this section.

Algebraic proof of Proposition 12 in characteristic zero. Let t and u be two uniformizers at x. Let

ω =
a−Ndu

uN
+
a−N+1du

uN−1
+ · · ·+ a−1du

u
+ η

where η is regular at x. We must show that the residue of ω with respect to t is a−1. Since residue
is linear, it suffices to carry out three computations:

Computation 1: For m ≥ 2, the t-residue of du
um is 0. This follows from the fact that du

um =

− 1
m−1d

1
um−1 and the easy fact that the residue of df is always 0. Note that this computation uses

the fact that k has characteristic 0, in order to divide by m− 1.
Computation 2: If η is regular at x, then the t-residue of η is 0. This is obvious.
Computation 3: For u a uniformizer, the t-residue of du

u is 1. Let u = ft with f a unit. Then
du
u = dt

t + df
f . The t-residue of dt

t is 1, and df
f is regular at x. �

Proposition 16. Proposition 13 holds on P1.

Proof. Any rational 1-form on P1 is of the form f(t)dt for some rational function f(t). Using partial
fraction decomposition, we can write f(t) as a sum of monomials in t and functions of the form
1/(t − a)r. It is easy to check that tmdt has all residues equal to 0 for m ≥ 0, that dt/(t − a)r

has all residues equal to 0 for r ≥ 2 and that dt/(t− a) has precisely two poles (at a and ∞) with
residues 1 and −1. �

We now aim to reduce the general case to that of P1. Choose a separable noether normalization
π : X → P1. Let Tr(π) to denote the standard trace map from Frac(X) to Frac(P1). We define
trace of 1-forms as follows: Choose a nonzero rational 1-form η on P1 and write ω = fπ∗η. (Since
π is separable, π∗η 6= 0.) Then Trπ(ω) = Trπ(f)η; we leave it to the reader to check that this is
independent of the choice of η.

Remark. Let z be a point of P1 with π−1(z) = {x1, . . . , xr}, with π ramified of degree ei at xi.
Then (Trπg)(z) =

∑
eig(xi), for any g ∈ Frac(X) which is regular at x1, x2, . . . , xr. It is

difficult to give a similar description of Trπω in general. If π is unramified at the xi, then we have
Trπ(ω)x =

∑
i(π
∗
i )
−1ωxi where π∗i denote the pull back T ∗z P1 → T ∗xiX.

Proposition 17. For θ ∈ Frac(X), we have Trπdθ = dTrπθ.

Proof. The conceptual proof is to use the fiber-wise description of trace in the above remark. We
also provide an unenlightening direct proof. Let θn + an−1θ

n−1 + · · ·+ a1θ+ a0 = 0 be the minimal



polynomial of θ over Frac(P1). Then

dθ = − θn−1dan−1 + · · ·+ θda1 + da0
nθn−1 + (n− 1)an−1θn−1 + · · ·+ a1

.

The denominator is nonzero because π is separable. So

Trπdθ = −
n−1∑
j=0

Trπ

(
θj

nθn−1 + (n− 1)an−1θn−1 + · · ·+ a1

)
daj .

We have a1 = −Trπθ, so we are done if we show

Trπ

(
θj

nθn−1 + (n− 1)an−1θn−1 + · · ·+ a1

)
=

{
1 j = n− 1

0 0 ≤ j < n− 1
.

Pass to a splitting field of θn +an−1θ
n−1 + · · ·+a1θ+a0, where θ has Galois conjugates θ1, θ2, . . . ,

θn. We are being asked to prove the identity
n∑
r=1

θjr∏
s 6=r(θr − θs)

=

{
1 j = n− 1

0 0 ≤ j < n− 1
.

One slick proof is to note that this is a formal polynomial identity, so it is enough to prove it when θ1,
. . . , θn are in k. Use Proposition 16, applied to the 1-form zr(z−θ1)−1(z−θ2)−1 · · · (z−θn)−1dz. �

Proposition 18. For any z ∈ P1, we have reszTrπ(ω) =
∑

x∈π−1(x) resz(ω).

Proof of Proposition 18 in characteristic zero. Let π be unramified of order ei at xi. Let t be a
uniformizer at t. Note that π∗(dt/t) has a simple pole at xi with residue ei. In particular, the
residue at xi is nonzero, since we are in characteristic zero.

Choose a rational function f on X such that ω−df has only (at most) simple poles at xi. Define
g ∈ Frac(X) by ω − df = gπ∗(dt/t). Then g is regular at xi since π∗(dt/t) has nonzero residue at
each xi. So it is enough to prove Proposition 18 for df and for gπ∗(dt/t).

By Proposition 17, Trπdf = dTrπf . Since closed 1-forms have residue 0 everywhere, Proposi-
tion 18 for df is simply the identity 0 =

∑
x∈π−1(z) 0.

We have Trπ(gπ∗(dt/t)) = Trπ(g)(dt/t) so reszTrπ(gπ∗(dt/t)) = (Trπg)(z). We have (Trπg)(z) =∑
i eig(xi) =

∑
i resxi (gπ∗(dt/t)), confirming Proposition 18 for gπ∗(dt/t). �

Proposition 13 now follows immediately:
∑

x∈X resxω =
∑

z∈P1 reszTrπ(ω), and we have already

checked the result on P1.
Proving Propositions 12 and 18 in characteristic p is surprisingly challenging. Serre writes of

these results “it seems one can obtain a truly natural proof only by taking the point of view of
Grothendieck’s general ‘duality theorem’.” (Algebraic Groups and Class Fields, bibliographic notes
at the end of chapter II.) If I get the time, I’ll write up some unnatural proofs. Otherwise, I refer
you to Serre ibid, Chapters II.11-13.

7. Conclusion of the proof

We recall the long exact sequence from Proposition 10. Let D be a divisor on X, let p be a point
of X and let D′ = D + p. Then we have long exact sequences

0 → H0(O(D)) → H0(O(D′)) → k → H1(O(D)) → H1(O(D′)) → 0

0 ← H1(Ω(−D)) ← H1(Ω(−D′)) ← k ← H0(Ω(−D)) ← H0(Ω(−D′)) ← 0.

The second sequence is Proposition 10 applied to the divisors K −D′ and K −D = K −D′ + p.
We have bilinear pairings between each pair of vertically aligned vector spaces: The Serre pairings

in four positions and the nontrivial pairing k×k → k in the middle. If you have been careful enough



to realize that the middle vector spaces are actually4 TpX
⊗(D(p)+1) and TpX

⊗(−D(p)−1), then you
don’t have to wonder how to normalize the middle pairing.

We claim that the vertically aligned horizontal arrows are adjoint to each other. Between the
first and second columns, this is straightforward. The claim is that

∫
fω means the same thing

whether we are considering f and ω as elements of O(D) and Ω(−D′)U∩V or as elements of O(D′)
and Ω(−D)U∩V . The same applies between the fourth and fifth columns.

We now check adjointness between the second and third columns. Choose our cover (U, V ) so
that p ∈ V \ U and let u be a uniformizer at p. Let f ∈ H0(O(D′)) and let a be in k. The
bottom map H1(Ω(−D′)) ← k is defined as follows: Find η ∈ Ω(−D)V whose Laurent expansion

at p begins
(
auD(p) + · · ·

)
du and consider η as a class in H1(Ω(−D′)). The map sends a to η.

Now we compute
∫
fη. At the points of V \ U other than p, the form fη has no poles. Writing

f = bu−D(p)+1 + · · · , the residue of fη at p is ab. Meanwhile, the map H0(O(D′))→ k sends f to
b. So the pairing in the third column is also ab. We can make a similar computation between the
third and fourth column.

We can rephrase our adjointness results by saying that we have a commutative diagram:

0 // H0(O(D)) //

��

H0(O(D′))
α //

��

k
β // H1(O(D)) //

��

H1(O(D′)) //

��

0

0 // H1(Ω(−D))∨ // H1(Ω(−D′))∨ α′ // k
β′ // H0(Ω(−D))∨ // H0(Ω(−D′))∨ // 0

Our goal is to prove that the vertical arrows are isomorphisms. Replacing D by K −D and taking
duals of everything rotates the diagram 180◦, so we may concentrate on the left half.

We cut off the right two columns to form a commutative diagram with exact rows:

0 // H0(O(D)) //

σ
��

H0(O(D′)) //

σ′

��

Im(α) //
� _

��

0

0 // H1(Ω(−D))∨ // H1(Ω(−D′))∨ // Im(α′) // 0

Note that Im(α) is quite literally contained in Im(α′).
The snake lemma now implies that Ker(σ) ∼= Ker(σ′). Using this repeatedly, the kernel of

H0(O(D))→ H1(Ω(−D))∨ is independent of D. If degD < 0 then H0(O(D)) = 0, so H0(O(D))→
H1(Ω(−D))∨ is injective for all D. The remaining challenge is to prove that it is surjective.

Define q(D) = CoKer(H0(O(D)) → H1(Ω(−D))∨); we want to show q(D) is zero. From the
snake lemma, q(D) → q(D′) is injective. Also, we already noted that H0(O(D)) → H0(O(D′))
and H1(Ω(−D))∨ → H1(Ω(−D′))∨ are injective. Applying these injectivity results repeatedly, we
obtain

Proposition 19. If D ≤ E then H0(O(D)), H1(Ω(−D))∨ and q(D) inject into H0(O(E)),
H1(Ω(−E))∨ and q(E) respectively.

We are now closing in on the end of the proof. By Proposition 19, it is enough to show q(D) = 0
when D ≥ 0. Moreover, we may assume that X \ D is affine. (In fact, X \ D is affine for any
nonempty D. If you don’t want to show that, choose a noether normalization π : X → P1 and
replace D by π−1(π(D)); then X \ π−1(π(D)) is finite over the affine P1 \ π(D).)

Define

H0(O(∞D)) :=
⋃∞
m=0H

0(O(mD))

p(∞D) :=
⋃∞
m=0H

1(Ω(−D))∨

q(∞D) :=
⋃∞
m=0 q(mD)

4For a 1-dimensional vector space V , and a positive integer r, the notation V ⊗(−r) means (V ∨)⊗r.



where the unions5 make sense because of Proposition 19. Using Approximate Riemann Roch and
Proposition 11, we deduce

Proposition 20. The vector space q(∞D) is finite dimensional.

Let U = X \D and let V be some other proper open subset of X such that X = U ∪ V . We’ll
compute H1 and thus q using the cover (U, V ). Note that H0(O(∞D)) is none other than OU . Of
course, our eventual goal is to show that p(∞D) = H0(O(∞D)) and q(∞D) = 0. Before we can
do that, we show:

Proposition 21. The vector spaces p(∞D) and q(∞D) naturally have the structure of OU -modules.

Proof. Unpacking the definition, p(∞D) is the set of linear functionals φ : ΩU∩V → k which vanish
on ΩU and vanish on ΩV (−mD) for some D. For any f ∈ U , multiplication by f takes ΩU∩V and
ΩU to themselves. Also, if f ∈ OU (tD), then multiplication by f takes ΩV (−mD) to ΩV ((t−m)D).
So the functional (f ∗ φ)(ω) := φ(fω) is also in p(∞D). This gives p(∞D) the structure of an
OU -module.

Looking at the definition of the map H0(O(D)) → H1(Ω(−D))∨, we see that H0(O(∞D)) →
p(∞D) is a map of OU -modules, so the cokernel q(∞D) inherits the structure of a OU -module. �

We now combine Propositions 20 and 21 to prove the Riemann-Roch theorem. A finite di-
mensional OU module is torsion. Choose h 6= 0 in OU so that h acts by 0 on q(mD). Let
D′ = D∪{h = 0} and U ′ = X \D′. Repeat the whole argument with D′ in place of D. The vector
space q(∞D′) is, then, a OU ′-module, and is thus an OU -module by restriction to OU ⊂ OU ′ . We
get a map of OU modules q(∞D)→ q(∞D′). But h is a unit in OU ′ , and h acts by 0 on q(∞D). So
a unit acts by 0 on the image of q(∞D) in q(∞D′) and we deduce that the map q(∞D)→ q(∞D′)
is zero. But, using Proposition 19, this means that q(∞D) = 0. In particular, q(D) = 0.

We have shown that q(D) = 0. So the Serre duality map H0(O(D)) → H1(Ω(−D))∨ is an
isomorphism. We have proved Serre Duality and, thus, the Riemann Roch theorem. QED

5It would be tempting, but incorrect, to describe p(∞D) as
(

ΩU∩V /
⋂

m≥0 Ω(−mD)U∩V
)∨

or as(
lim
∞←m

H1(Ω(−mD))
)∨

. This does not give the same vector space. One must dualize first, and then take the

union/direct limit.


