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THE DAILY UPDATE – MATH 631, FALL 2014

September 3 Algebraic geometry is wonderful and everyone should learn it!

September 5 Let k be an algebraically closed field. Let X be a subset of kn. Then
we can consider the set of all polynomials in k[x1, . . . , xn] which vanish on X; we call this
I(X). Conversely, let J be a subset of k[x1, . . . , xn]. We can consider the set of all points
(u1, u2, . . . , un) in kn so that f(u1, . . . , un) = 0 for all f ∈ J ; call this set Z(J).
J(X) will always be an ideal, meaning that, if g1, . . . , gr are elements of J(X) and f1, . . . ,

fr are any polynomials, then f1g1 +· · ·+frgr is in J(X). In fact, it is a radical ideal, meaning
that if fn ∈ J(X) then f ∈ J(X). When we prove the Nullstellansatz, we will see that the
possible outputs of J are precisely the radical ideals. There isn’t a simple description of the
possible outputs of V , so we make a definition: A subset X of kn is called Zariski closed if
it is of the form Z(J) for some J . Zariski closed sets are the set of closed sets of a topology
(homework!). It follows from the Nullstellansatz that J and Z give bijections between the
sets of radical ideals and of Zariski closed subsets of kn.

If X ⊂ kn is Zariski closed, then we define a regular function on X to be the restriction
to X of a polynomial from k[x1, . . . , xn]. The ring of regular functions on X is denoted OX .
A regular map X → Y is a map all of whose coordinates are regular functions.

September 8 We went through several statements of the Nullstellensatz:
Let k be an algebraically closed field.
Weak version:

Given g1, . . . , gN ∈ k[x1, . . . , xm], the following are equivalent:
(1) g1, . . . , gN have no common zero in km

(2) ∃f1, . . . , fN ∈ k[x1, . . . , xm] with f1g1 + · · ·+ fNgN = 1.
Strong version:

Given g1, . . . , gN , h ∈ k[x1, . . . , xm], the following are equivalent:
(1) whenever g1 = · · · = gN = 0, then h is also 0.
(2) ∃f1, . . . , fN ∈ k[x1, . . . , xm] and M ∈ Z+ so that hM = f1g1 + · · ·+ fMgM .

Weak version for ideals:
For an ideal J ⊆ k[x1, . . . , xm], Z(J) = ∅ if and only if J = (1).

Strong version for ideals:
For an ideal J ⊆ k[x1, . . . , xm] and h ∈ k[x1, . . . , xm], h ∈ I(Z(J)) if and only if ∃h ∈ Z+ so

that hM ∈ J . That is,
√
J = I(Z(J)).

Weak version for maximal ideals:
All maximal ideals of k[x1, . . . , xn] are of the form 〈x1−a1, . . . , xn−an〉 for some (a1, .., an) ∈
kn.

Corollary: The maximal ideals of k[x1, . . . , xn]/J are 〈x1 − a1, . . . , xn − an〉 for some
(a1, .., an) ∈ kn.

These mean that we can finally prove that (1) Z and I are mutually inverse bijections
between Zariski closed subsets of kn and radical ideals in k[x1, . . . , xn]. (2) Isomorphism
classes of algebraic sets are in bijection with isomorphism classes of finitely generated radical
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k-algebras and (3) MaxSpec(A), which we preliminarily defined as Hom(A, k), is in fact the
set of maximal ideals of A.

September 10 The goal of today was to (carefully) go through Arondo’s proof of the
contrapositive of the forward direction in the statement of the weak nullstellensatz for ideals
from last time, i.e.:
Theorem. If J ( k[x1, . . . , xn] is an ideal for k = k, then there exists (a1, . . . , an) ∈ kn such
that f(a1, . . . , an) = 0 for all f ∈ I.
The idea is to induce on dimension n: we take our ideal J ⊂ k[x1, . . . , xn], take its intersection
J ′ := J ∩k[x1, . . . , xn−1], finding a point in Z(J ′) by the inductive hypothesis, and try to lift
this to a point in Z(J). Geometrically, this process corresponds to projection. However, this
projection can act badly: if we take J = 〈xy − 1〉, then J ′ = 0, hence 0 ∈ Z(J ′) ⊂ k1, but
there is no point (0, y) ∈ Z(J) ⊂ k2. The solution is to apply a linear change of variables
before taking the intersection: if f ∈ I is nonzero, then f(x1+λ1, x2+λ2, . . . , xn−1+λn−1, xn)
for suitable choice of λi is of the form xdn+fd−1x

d−1
n +· · ·+f1xn+f0, where fi ∈ k[x1, . . . , xn−1].

The Theorem is then proved by the following:
Lemma. If J is as above and contains an element f of the form xdn + fd−1x

d−1
n + · · · +

f1xn + f0, where fi ∈ k[x1, . . . , xn−1], then every (a1, . . . , an−1) ∈ Z(I ∩ k[x1, . . . , xn−1]) lifts
to (a1, . . . , an) ∈ Z(J).
We actually proved the contrapositive. If there does not exist (a1, . . . , an) ∈ Z(J), then it is
possible to construct another polynomial g ∈ J such that g(a1, . . . , an−1, xn) = 1. Taking the
resultant of f and g gives a polynomial R ∈ J∩k[x1, . . . , xn−1] such that R(a1, . . . , an−1) 6= 0.

September 12
We went over the relation of the connectedness of a Zariski closed set in kn and the

existence of nontrivial idempotents in the coordinate ring; Noetherian rings and Hilbert
Basis Theorem.

Definition (idempotent). An element e ∈ A is idempotent if e2 = e.

We proved that X = X1 tX2, where X1, X2 are Zariski closed ⇐⇒ the coordinate ring
k[X] has nontrivial idempotents(i.e. e 6= 1 or 0.)

Corollary. If X = X1 t X2, for ∀f0, f1 regular functions on X1 and X2, there exists f
regular function on X such that f

∣∣
X0

= f0, f
∣∣
X1

= f1.

We also defined Noetherian ring: In a commutative ring , TFAE:
(1) ∀I ⊆ A is finitely generated.
(2) ∀ chain of ascending ideals I1 ⊆ I2 ⊆ · · · ⊆ In ⊆ · · · , there exists r ∈ N such that
Ir = Ir+1 = Ir+2 = · · · .

Corollary. If Xi ⊂ kn are Zariski closed and X1 ⊇ X2 ⊇ · · · ⊇ Xn ⊃ ..., then there exists
r ∈ N such that Xr = Xr+1 = Xr+2 = · · · .

Theorem (Hilbert Basis Theorem). ∀ finitely generated k-algebra is Noetherian.

Remark. In particular, if X ⊆ kn is Zariski closed, then I(X) is finitely generated.

Corollary. If X ⊆ kn is Zariski closed, then X has finitely many connected components.



September 15
A decomposition of X is X = X1

⋃
X2 where X1, X2 are nonempty closed subset of X

and X1, X2 6= X. X is irreducible , if it has no decomposition.
Theorem: A algebraic set X is irreducible if and only if ΩX is a domain.
Any algebraic set X can be written as X = X1

⋃
X2

⋃
. . .
⋃
Xn, where Xi is irreducible.

The decomposition is unique if we require Xi * Xj for any i 6= j. We define a closed subset
Z of X to be an irreducible component of X if Z is closed, irreducible and there does not
exist a closed irreducible Z ′ in X such that Z * Z ′. These are the Xi which appear in the
unique decomposition described above. The facts follow from the following useful Lemma:

Lemma If X = X1

⋃
X2

⋃
. . .
⋃
Xs, Xi is irreducible and closed. Z ⊂ X is closed and

irreducible. Then Z ⊂ Xi for some i.
Finally, we make the translation into commutative algebra: Z is an irreducible component

if and only if I(Z) is a minimal prime ideal of Ωx.

September 17
Today we discussed Distinguished Open Sets , which are also called basic open sets.

These denote sets having the form D(q) := {x ∈ X : q(x) 6= 0} where q ∈ ΩX and X is an
algebraic set. We have the following useful result:

Lemma: If U ⊆ X is open and x ∈ U , then there is some q ∈ ΩX such that x ∈ D(q) ⊆ U.
Next we talked about regular functions. Let X be an algebraic set, Ω ⊆ X open and

x ∈ Ω with f : Ω → k. We say that f is regular at x if there is an open set U ⊆ Ω with

x ∈ U , and regular functions g, h : X → k, h|U 6= 0 and f |U =
g

h
|U .

For example,
1

x
is regular on k \ 0, yet it is not regular on k.

We ended the class with an important result. It tells us that the definitions of regular
functions as global functions on X and as functions with good local properties
coincide.

Theorem: Suppose X is an algebraic set and f : X → k is regular at every x ∈ X. That
is, for every x ∈ X there exists x ∈ Ux open and gx, hx ∈ ΩX such that hx|Ux 6= 0, and

f |Ux =
gx
hx
|Ux . Then f ∈ ΩX .

September 19
Today we discussed a way of determining if two varieties are ”the same”. That is, we

defined a notion of isomorphism of varieties and looked at a few examples. An isomorphism
X ∼= Y of varieties is a homeomorphism on the topological spaces, which takes the ring of
regular functions to each other.

A morphism X → Y is a continuous map φ of topological spaces φ : X → Y such that
for V ⊆ Y open, if f is regular on V , then f ◦ ϕ is regular on φ−1(V ).

Next we discussed some examples. One example that is good to keep in mind is that there
is an isomorphism Z(xy− 1) ∼= Z(t), where the underlying space of the first set is k2, and k
is the underlying space of the second one. The map π : Z(xy − 1)→ k∗ given by projection
gives the isomorphism.

We also touched on some other interesting/useful mathematics. For instance, we showed
that the Distinguished Open Sets D(q) are actually isomorphic to affine algebraic vari-
eties even though they themselves are but quasi-affine sets as described. Actually, this is



used in the proof of the above example. The last thing we touched on was the following
result.

Theorem: The regular functions on D(q) are the functions of the form
f

qN
, f ∈ ΩX , N ≥ 0.

September 22 Today’s class introduced the idea of projective geometry as a natural
extension of plane geometry.

Let V be a k-vector space and V6=0 := V − {0}. Then P(V ) is defined to be V 6=0/k
∗,

where the action of k∗ on V 6=0 is given by rescaling of vectors. Defining P(V ) as a set of
equivalence classes on the topological space V6=0, allows us to define a topology on P(V ).
This is the quotient topology given by the quotient map q : V6=0 → V6=0/k

∗. In particular, a
set X ∈ P(V ) is Z-closed if its pre image q−1(X) is Z-closed in V6=0. We denote q−1(X) by
CX6=0 and we let CX := CX6=0 ∪ {0}.

A useful tool in studying projective space is the introduction of linear charts . Let
L ⊂ V be a codimension 1 linear space not passing through 0. The composition of maps
L ↪→ V 6=0 � P(V ) is an injective map and q(L) is an open subset of P(V ) since is the
complement of a closed set (the vanishing set of a single linear polynomial). We will call
q(L) a linear chart in P(V ). One notices that the induced Zariski topology on a linear chart
is the Zariski topology on L.

One immediate application of projective geometry is a sleek proof of Desargues’ theorem
which states that if two triangles are in perspective centrally, then they are in perspective
axially.

September 24
The goal of today’s class was to set up definitions that allow us to work with projective

and quasi-projective varieties.
First we discussed some basic definitions for subsets of projective space and subsets of

projective space. Let V be a finite dimensional k vector space. Then we write V 6=0 to denote
the set V \ {0}, and P(V ) to be V\0/k

∗ the projectivization of V . For X ⊆ P(V ) we will
write CX6=0 for the preimage of X in V 6=0 and CX for CX6=0 ∪ {0}, the cone on X . If L
is a space of codimension 1 in V , not through 0, then the image of L in P(V ) is a linear
chart .

Next we talked about the topology on P(V ). The Zariski topology on P(V ) is the quotient
topology. That is, Z is closed in P(V ) if and only if its preimage CZ6=0 is closed in V6=0 if
and only if CZ is closed in V . Similarly, Z is open in P(V ) if and only if CZ6=0 is open in
V6=0 if and only if CZ6=0 is open in V .

There are three ways of thinking about the topology.

Theorem. Given Z ∈ P(V ), the following are equivalent.

(1) Z can be defined as the vanishing set of a set of homogeneous polynomials.
(2) CZ is closed in V .
(3) For a cover of P(V ) by linear charts {Li}i∈I , Z ∩ Li is closed in each Li.

In the proof of this, we also proved the lemma that linear charts are open in P(V ).
Similarly, we can consider regular functions in three ways.

Definition. Let X ⊆ P(V ) be Zariski closed, Ω ⊆ X Zariski open in X, and f : Ω → k a
function. If x ∈ Ω we say that f is regular at x if any of the following equivalent conditions
hold:



(1) There exists U ⊆ Ω open with x ∈ U and g, h ∈ Sd (the homogeneous polynomials of
degree d) such that h|U 6= 0 is nowhere zero on U and (g/h)|U = f |U .

(2) The pullback of f to the quasi-affine set CΩ 6=0 is regular at some preimage of x.
(3) For a linear chart L containing x, f |Ω∩L is regular at x.

A regular map is a map given by regular functions in these senses.

Note that if X ⊆ Pn is Zariski closed and we have h0, . . . , hn ∈ Sd with no common zero
on X, then X → Pn given by x = (x0, . . . , xn) 7→ (h1(x), . . . , hm(x)) is regular. However, it
is not true that all regular maps can be represented this way. Regularity is a local condition
and must be checked on charts.

September 26
We reviewed some notation and gave examples of morphisms of projective varieties.

Example (Change of co-ordinates). Any invertible linear transformation T : V → V induces
a map P(V ) → P(V ) by [x0 : . . . : xn] 7→ [L0(x) : . . . : Ln(x)] where x = (x0, . . . , xn) and

Li ∈ V ∗ is given by
∑N

j+0 aijxj.

Example. We can have f : P1 → P2 by [s : t] 7→ [s2 : st : t2].
This is well-defined:

• f([s : t]) 6= [0 : 0 : 0] because s 6= 0 or t 6= 0.
• [s : t] = [λs : λt] 7→ [λ2s2 : λ2st : λ2t2] = [s2 : st : t2]

The image of f is a curve C contained in Z(xz − y2) ⊂ P2, because s2t2 = (st)2. So we
have maps

P1 → C → P2

. In the chart Us, we have

[1 :
t

s
] 7→ [1 :

t

s
: (
t

s
)2]

So we are effectively mapping A1 → C → A2 = Ux mapping by

t

s
→ (

t

s
, (
t

s
)2),

in other words a 7→ (a, a2). In this chart, zx− y2 = z− y2 and the map is clearly surjective.
An identical argument shows that Ut → Uz is surjective.

Is f regular? Yes - because it is (obviously) regular on each affine chart!

Example. Let’s take the same curve, C = Z(xz − y2) ⊂ P2 and map g : C → P1 by
[x : y : z] 7→ [x : y] when x 6= 0 and [x : y : z] 7→ [y : z] when z 6= 0.

This is well-defined:

• Take [x : y : z] ∈ C. If x = z = 0, then y = 0 which is impossible. So either x 6= 0 or
z 6= 0, and hence [x : y] ∈ P1 or [y : z] ∈ P1.
• What if x, z 6= 0 simultaneously? If [x : y : z] ∈ C = Z(xz − y2) and x, z 6= 0, then

[x : y] = [zx : zy] = [y2 : zy]. Since x, z 6= 0, we have y 6= 0, so [y2 : zy] = [y : z], as
required.

Now, we ask if g is a map of varieties. The image of g on Uz ⊂ P2 is given by mapping

[
x

z
:
y

z
: 1] 7→ [

y

z
: 1]



and so we are mapping Uz ∩ C → Ut. In the affine chart, this is given by

(
x

z
,
y

z
) 7→ y

z
This is clearly regular, and an identical argument works for Ux. Also, as noted above,
C ⊂ Ux ∪Uz because on C, we must have at least one of x 6= 0 or z 6= 0. Hence, g is regular.

Notice that f and g above are mutually inverse, so P1 is isomorphic to the conic Z(xz−y2)
under f . These maps can be generalized, and exactly the same argument shows that the
Veronese embeddings of P1 in Pd is an isomorphism (of projective varieties) onto its image.

Definition. The dth Vernoese mapping of P1 is defined by P1 → Pd by [s : t] 7→ [sd : sd−1t :
. . . : std−1 : td].

The image of this map above is called the rational normal curve of degree d. More

generally, there is a dth Veronese map on any projective space Pn → P(n+d
d )−1 defined by

[s0 : . . . s : n] 7→ [. . . : sa00 · . . . · sann : . . .] where
∑
ai = d (that is, the image is the list of all

monomials of degree d in the coordinates s0, . . . , sn). This is also an isomorphism onto its
image.

September 29
Today we discussed about a notion of X×Y = {(x, y) : x ∈ X, y ∈ Y }. We will first define

a Zarisko topology in a product space in abstract way, and then we will give an alternative
definition using Segre map.

Example. For affine varieties, topology and regular functions are pretty straightforward.
For X ⊂ Am and Y ⊂ An, where X = Z(f1, · · · fr) and Y = Z(g1, · · · , gs), X × Y :=

Z(f1, · · · , fr, g1, · · · , gs).
Note that this is NOT a product topology.

Now, we define a Zariski topology in a product space.

Definition. For quasi-projective varieties X and Y , Z ⊂ X × Y = {(x, y) : x ∈ X, y ∈ Y }
is Zariski closed if for some open covers X =

⋃
i Ui and Y =

⋃
i Vi, by affines, Z ∩ (Ui×Vi)

is closed in Ui × Vi.

Definition. (Regular functions) For an open set Ω ⊂ X × Y , a function f : Ω → k is
regular if for some open affine covers X =

⋃
i Ui and Y =

⋃
i Vi, the restrictions f |(Ui×Vi)∩Ω

are regular.

We can give an alternative definition using the Segre map. Here, we want to see Pm × Pn
as a projective variety inside Pmn+m+n.

Consider a map σ : Pm × Pn ↪→ Pmn+m+n such that

σ : [x0 : · · · : xm]× [y0 : · · · : yn] 7→

 x0y0 · · · x0yn
...

. . .
...

xmy0 · · · xmyn



Label Pmn+m+n as

 z00 · · · z0n
...

. . .
...

zm0 · · · zmn





This is a map from Pm×Pn to Pmn+m+n and it can be easily shown that it is well defined
and injective. Using this map, we can give an alternative definition of Zariski closed set

Definition. (Alternative definition) The Zariski Topology on Pm×Pn is the induced topology
on Pm × Pn: i.e., Z ⊂ Pm × Pn is closed if σ(Z) ⊂ Pmn+m+n is Zariski closed.

We can show that σ is injective, and the image of Pm×Pn under the Segre map σ is Zariski

closed, and the explicit equations are det

∣∣∣∣ zik zil
zjk zjl

∣∣∣∣ for all 0 ≤ i, j ≤ n and 0 ≤ k, l ≤ m.

Also, the inverse map σ−1 : σ(Pm × Pn)→ Pm × Pn is also regular (with respect to the first
definition). So we can give an alternative definition of regular function.

Definition. A set Z ⊂ Pm × Pn is Zariski closed if σ(Z) is Zariski closed in Pmn+m+n, and
for an open set Ω ⊂ Pm × Pn, a function f : Ω → k is regular if f is regular as a function
on the quasi-projective space σ(Ω).

October 1
Our next big result is:

Theorem. Let B be quasi-projective and X be Zariski closed in B × Pn.
Then the image of the projection of X onto B is Zariski closed.

Today we talk about why we care.
Recall that in the proof of the Nullstellensatz, we had X ⊂ An−1 × A. The projection of

X onto An−1 might not be closed. In Pn, it won’t be the case. The “infinity points” form a
“closure”.

Example. Resultants: P1 × A(m+1)+(n+1)

X = {[x : y]× (fm, · · · , f0, gn, · · · , g0)}
such that

f0x
m + f1x

m−1 + ...+ fmx
m = 0

g0y
n + g1y

n−1 + ...+ gnx
n = 0

Theorem implies that there are equations R1, ..., Rt in the fi and gj s.t. f(x, y) and g(x, y)
have a common zero in P1. (Or equivalently, R1(f, g) = R2(f, g) = ... = Rt(f, g) = 0)

Example. X ⊂ Pn, φ : X → B : a regular map. Then φ(X) is closed. (Consider the graph
Γφ = {(x, b) : φ(x) = b} ⊂ Pn ×B. φ(X) is projection of Γφ.

Special Case: X ⊂ Pn, x ∈ Pn \X. Can project from x to Pn−1.

Example. Determinant: B = An2 × Pn−1

X =


 a11 · · · a1n

...
...

an1 · · · ann

×
 v1

...
vn

 :

 a11 · · · a1n
...

...
an1 · · · ann

 v1
...
vn

 = 0


So there are some polynomials in entries of aij which vanish when (aij) has nonzero kernel.



Example. This is a non-example:

Pn−1 × Pn−1 × Pn−1 × Pn−1 → Pn2−1 u1
...
un

  v1
...
vn

  w1
...
wn

  x1
...
xn


(~u,~v, ~w, ~x)→

 u

 ( v ) +

 w

 ( x )

First of all, it is not a well-defined map(0 in image. and the image doesn’t scale well when
each input scales).

Also, as a counter-example, closure of a set of rank 2 tensors may contain rank 3 tensors.

We close with some motivation from topology. Let k be a topological space.
Definition: K is universally closed if for all topological spaces B and all closed X ⊆ K×B,

projections of X into B is closed in B. (Note that this is the product topology)

Theorem. Universally closed ⇔ compact.

See http://www.cs.bham.ac.uk/∼mhe/papers/compactness-submitted.pdf for the proof.

October 3
The goal of today’s lesson was to give a proof of the following theorem:

Theorem. X is a quasi-projective variety and Y is a Zariski Closed subset of Pn ×X. Let
π be the projection map π : Pn ×X → X. Then π(Y ) is closed.

To begin with, we introduce a preliminary result:

Theorem. If X and Y are affine varieties, a regular map π : Y → X is such that ΩY is a
finite generated ΩX module. Then π(Y ) is closed.

In this context, we call π a finite map. Let’s consider X = MaxSpecA and Y =
MaxSpecB with the condition that B is finitely generated A-module. We need to show
π(Y ) is closed in X. Take x ∈ X\π(Y ), let mx be the maximal ideal of functions vanish-
ing at x. Since x /∈ π(Y ), we have π−1(x) = ∅. It follows that π−1(x) = Z(mxB) and
Ωπ−1(x) = B/

√
mxB, so we have B/mxB = (0). Now we can apply the Nakayama’s Lemma

to obtain some f ∈ A, f /∈ mx such that f−1(B) = (0). This gives a distinguished open set
D(f) ⊂ X such that x ∈ D(f) and π−1(D(f)) = ∅. So D(f) is a open subset of X\π(Y ),
indicating π(Y ) is a closed set.

Next, we’re going to prove our main theorem. It suffices to check on every open cover
of X. So without loss of generality, we may assume X is affine and consider R = ΩX and
X = MaxSpecR. It is clear what we mean by CY6=0 in An+1 × X. Choose some Zariski
closed CY in An+1 ×X with CY6=0 = CY ∩ (An+1 ×X).

The most natural choice (see homework) would be to take CY = CY6=0. Algebraically,
this means ΩCY = R[x0, x1, · · · , xn]/I, where I is 〈x0, x1, · · · , xn〉 saturated (i.e. If xif ∈ I
for every i = 0, 1, . . . , n, then f ∈ I.) But this argument will work with any choice of CY .

Let S = R[x0, x1, · · · , xn]/I. Let x ∈ X\π(Y ) and let mx be the maximal ideal of
functions vanishing at x. Since Z(mxI) is the preimage of x in CY , we have Z(mxI) =



∅ or (0, 0, · · · , 0). So
√
mxI = (1) or (x0, . . . , xn). Thus, when d is sufficiently large,

〈x0, x1, · · · , xn〉d(n+1) ⊂ 〈xd0, xd1, · · · , xdn〉 ⊂ mxI.
Let I =

⊕∞
d=0 Id, we have shown that Id/mxId → (R/mx)[x0, x1, · · · , xn]d is surjec-

tive, i.e. (S/mxS)d = 0. Consider R[x1, x2, · · · , xn]d as a finitely generated R-module,
then by Nakayama’s Lemma, there exists f ∈ R, f /∈ mx such that f−1(Sd) = 0, where
Sd = R[x1, x2, · · · , xn]d/Id. It follows that f−1Id = f−1R[x0, x1, · · · , xn]d. So every xe =
xe00 x

e1
1 · · ·xenn of degree d can be written as xe =

∑
risi, where ri ∈ f−1R and si ∈ Id. Take

N large enough, then we can have fNxe ∈ Id for all xe. In particular, π−1(D(f)) = ∅, so
D(f) is an open set in X\π(Y ) containing x, hence π(Y ) is closed.

October 6
First, we clarified the notation in last problem on the homework; in the formula µ∗(u)(g1, g2) =∑N
1 vi(g1)ei(g2), u belongs to ΩG, for which {ei} is a basis.
We remarked that an alternate proof of regular images of projective varieties being closed

can be found in Shafarevich, or in alternate (more detailed) form in Cox, Little and O’Shea,
Ideals, Varieties and Algorithms.

Next, we asked: how many points are in the fiber of a finite map? Recall our setup:
Y = MaxSpecB, X = MaxSpecA, and π : Y → X is regular, so we have a map π∗ : A→ B.
We say that π is finite if π∗ makes B into a finitely generated A-module. As an example,
we considered Y = A1 = MaxSpec k[v] and X = A1 = MaxSpec k[u], where π is given by
v 7→ u2. We also considered the inclusion Y = {(x, y) : x2 + y2 = 1} ↪→ X = A2, which
is finite since k[x, y]/(x2 + y2 − 1) is a cyclic k[x, y]-module. We remarked that any closed
inclusion is finite.

Proposition. In the notation above, if π : Y → X is finite, then for all x ∈ X, we have
#π−1(x) <∞.

Pf. Let mx be the maximal ideal of regular functions vanishing at x. Let R = B/mxB
and S = B/

√
mxB. If a set generates B as an A-module, then it generates R and S as

A/mx
∼= k-modules, i.e., dimk R, dimk S ≤ N . We claim that #π−1(x) = dimk S (while

remarking also that dimk R = #π−1(x), counting multiplicites). To prove the claim, we
show that if S is any finite-dimensional reduced k-algebra, then MaxSpecS is finite. If not,
then there exist distinct points p1, . . . , p1+dimk S in MaxSpecS. For j = 1, . . . , 1 + dimk S, let
fj ≡ 1 on pj and fi ≡ 0 on the other pi. We can extend each fj to a function on S, which
gives 1 + dimk S linearly independent functions on S, a contradiction. It now follows that
MaxSpecS has cardinality M <∞, so

S ∼= k × · · · × k︸ ︷︷ ︸
M times

,

as desired. �
By “naive fiber size,” we will mean #π−1(x) = dimk S; by “scheme-theoretic fiber size,”

we will mean dimk R.

October 8
Today we looked at examples of finite maps. The map of plane curves Z(uv) → Z(uv)

given by (u, v) 7→ (u2, v) shows us that to get a well behaved degree notion we should have
an irreducible target. Additionally we considered the projection onto the first coordinate
π : V (uv, v(v − 1)) → A1. In this situation one fiber is infinite, and so we will be more



interested in maps where each irreducible component maps onto a dense subset of the image.

Why is density the right condition? For a general affine projection π : Z1 ∪ . . . Zr → X
where each Zi and X is irreducible, we proved that ΩZ1∪...Zr is a torsion free ΩX module
under the map π∗ exactly when each π(Zi) is dense. One can show this by using the fact

that π∗(f) is a zero divisor for any nonzero f vanishing on some π(Zi) ( X.

Another example we considered is the curve parameterization of X = Z(y2 = x2 + x3)
given by t 7→ (t2 +1, t(t2 +1)) under an algebraically closed field of characteristic besides two.
The fiber of every point save the origin consists of a single point, the fiber over the origin
contains two points. This sort of situation occurs when the coordinate ring of the target is
not integrally closed. Note that α = y

x
satisfies α2 = 1+xα. Also note that the degree of this

polynomial corresponds to the degree of the fiber over the origin. The integral closure of OX

is the coordinate ring of a curve that projects onto X mapping two of its points to the origin.

The Frobenius map A1 → A1 taking t 7→ tp over a characteristic p field has one point fibers
over each point. (To see this note that the Frobenius endomorphism is linear over the prime
field and compute the kernel.) On the other hand its scheme theoretic fibers are dimension p.

Yet another example: Let Y = Z(wy = wz = xy = xz = 0) ⊆ A4 and take f : Y → A2

given by (w, x, y, z) 7→ (w − y, x − z). The fibers of this map consist of two points almost
everywhere but the origin, where it consists of one. Geometrically, two planes intersecting
at a special point are being rotated by f to coincide. However, we can compute the scheme
theoretic dimension at the origin and find that ΩY /(w − y, x − z) ∼= k[x, y]/(x2, xy, y2) is
three dimensional.

We define deg π := dimFrac(A) B ⊗A Frac(A) for π : MaxSpecB → MaxSpecA.

Here are some properties of scheme-theoretic length:

(1) It is upper semi-continuous. That is, every point in the domain achieves a local
maximum. Stated in a different way {x : scheme theoretic length of π−1(x) ≥ r} is
closed

(2) If π : X → Y is finite and Y is irreducible then the scheme theoretic length of any
point in the image is at least deg π.

(3) There is equality on some non-empty open set.

If A is a normal domain, π : MaxSpecB → MaxSpecA, B under π∗ becomes a torsion-free
A-module, and B/A is finite; then we can say of the naive fiber size (compare with the points
above):

(1) It is lower-semicontinuous.
(2) Naive fiber size is at most deg π.
(3) If the base field has characteristic 0, then on some dense open set in the image where

naive fiber size agrees with the degree of the map. (Recall the Frobenius example
above).

October 10



The goal of today’s class is to prove the 3 results on the scheme-theoretic length and naive
fiber size of a finite map, which we had discussed last time.

Theorem. Let Y = MaxSpec(B), X = MaxSpec(A) be affine varieties and let π : Y → X
be a finite map. Let K = Frac(A) and let deg(π) = dimK(B ⊗A K). Let #π−1(x) denote
the scheme-theoretic length.

(1) For any r > 0, the set {x ∈ X : #π−1(x) ≥ r} is closed.
(2) If X is irreducible, then the scheme length satisfies #π−1(x) ≥ deg(π).
(3) If X is irreducible, there is a nonempty open U ⊆ X on which the scheme length is

equal to deg(π).

Proof of (1): We will show that the complement {x : dimB/mxB < r} is open: let
e1, . . . , es be a lift of a k-basis of B/mxB, then consider the A-module map A⊕s → B given
by (a1, . . . , as) 7→ a1e1 + . . . + ases. By hypothesis, the induced map k⊕s → B/mxB is sur-
jective. Nakayama’s lemma gives f ∈ A\mx such that the induced map on the localizations
(f−1A)⊕s → f−1B is a surjection. Then, for any x′ ∈ D(f), the map

(f−1A/mx′)
⊕s ' (A/mx′)

⊕s ' k⊕s −→ f−1B/mx′f
−1B.

In particular, dimk(B/mx′B) ≤ s for any x′ ∈ D(f). �
Proof of (2): Again let e1, . . . , es ∈ B be a lift of a k-basis of B/mxB, then e1, . . . , es spans
f−1B as an f−1A-module, for f as above. Therefore, the ei’s span B ⊗A K as a K-module;
in particular, s ≥ deg(π). �
Proof of (3): Let e1, . . . , eN generate B as an A-module, so e1, . . . , eN span B ⊗A K
as a K-vector space. Reorder the ei’s so that e1, . . . , eM is a K-basis for B ⊗A K for
some M ≤ N . Thus for M < j ≤ N , we can write ej =

∑M
i=1

aij
fij
ei for some

aij
fij
∈ K,

and let F =
∏

i,M<j≤Nj fij. Notice that eM+1, . . . , eN , considered as elements of F−1B,

are in the F−1A-span of e1, . . . , eM . For any x ∈ D(F ), the e1, . . . , eM span B/mxB, so
#π−1(x) ≤M = deg(π). (2) gives the opposite inequality. �

Theorem. Let A be an integrally closed domain and let B be finitely-generated and torsion-
free as an A-module. Let #π−1(x) now denote the naive fiber size.

(1) For any r > 0, the set {x ∈ X : #π−1(x) ≤ r} is closed.
(2) #π−1(x) ≤ deg(π).

The proof of these results relies on the following commutative algebra lemma. (See
http://www.math.lsa.umich.edu/∼speyer/631/GaussLemma.pdf.)

Lemma. For θ ∈ B, let g(t) be the monic minimal polynomial of θ over K. Then,

(a) g(t) ∈ A[t].
(b) The kernel of the map A[t]→ B given by t 7→ θ is the ideal (g(t)).
(c) Define ψ : Y → X × A1 by x 7→ (π(x), θ(x)), then im(ψ) = Z(g).

See http://mathoverflow.net/questions/182863/lower-semicontinuity-of-naive-fiber-size
for an MO post discussing better proofs of (1), as well as an outline of the proof from class.

Added by David Speyer: I really thought the proof of (2) was in Shavarevich, but I
don’t see it. So: Let #π−1(x) = c. Choose θ ∈ B taking c distinct values on the points of
π−1(x). Let g(t) be the minimial monic polynomial of θ over K, then deg g ≤ deg π. We
have g(θ) = 0 everywhere on Y . In particular, the reduction of g(t) modulo mx vanishes at
all the values of θ on π−1(x). So deg g ≥ c and we conclude deg π ≥ c. �



October 15
Recall: if K/k is any field extension, it can be decomposed as

K
|

k(t1, . . . , td)
|
k

where K/k(t1, . . . , td) is algebraic and k(t1, . . . , td)/k is purely transcendental. The number
d is an invariant of K/k, called the transcendence degree.

Definition. If X is an irreducible affine variety, then dimX is the transcendence degree
of the field extension Frac(ΩX)/k. If X is any affine variety, then dim(X) is the the max
dimension of its irreducible components. If X is any quasi-projective variety, then dimX =
dimU for any dense open affine U ⊂ X.

Theorem. If ϕ : X → Y is a regular map with dense image, then dimX ≥ dimY .

Corollary. If Y is irreducible and X ⊂ Y is nonempty and open, then dimX = dimY .

Corollary. If ϕ : X → Y is regular, then dimϕ(X) ≤ dimX.

Lemma. (Noether Normalization Lemma) Given X ⊆ An, there is a surjective linear map
π : An → Ad such that π : X → Ad is surjective and finite.

Claim: d = dimX.
Proof : If X = MaxSpec(A) is irreducible, then A is a finite torsion-free k[t1, . . . , td]-module.
In particular, Frac(A) is a finite-degree field extension of k(t1, . . . , td). If X is not irreducible,
write X = ∪iZi where the Zi’s are irreducible, then the maps Zi → Ad are finite and at least
one must be surjective. �

Corollary. If X is closed in Y , then dimX ≤ dimY .

Theorem. The poset of irreducible subvarieties of a given X is graded by dimension. More
precisely,

(1) If Y, Z are irreducible subvarieties of X with Y ( Z, then dimY < dimZ.
(2) If Y, Z are irreducible subvarieties of X with Y ⊂ Z and dimY < dimZ − 1, then

there exists an irreducible subvariety W of X with Y ( W ( Z.

This theorem says that we could have defined the dimension dimX to be the maximal
length of a chain Z0 ( Z1 ( . . . ( Zd ⊆ X of irreducible subvarieties of X. Similarly, we can
define the Krull dimension of a commutative ring A to be the maximal length of any chain
I0 ) I1 ) . . . ) Id ⊃ (0) of prime ideals.

October 17 We proved that if X is an irreducible affine variety of dimension d, then any
irreducible component of Z(θ) ∈ X has dimension d− 1 where θ ∈ OX .

Warm up: X = An,OX = k[t1, ..., td], θ = ϕ1ϕ2 · · ·ϕr, where ϕi are irreducible polyno-
mials, then irreducible components of Z(θ) are Z(ϕi), Z(θ) =

⋃
Z(ϕi), need to check: (1)

Z(ϕi) is irreducible;(2) Z(ϕi) ( Z(ϕj) for i 6= j.
First Attempt: Pick a Noether normalization π : X → Ad, we would like π(Z(θ)) =

Z(somthing). Let A = k[t1, .., td], B = OX , FracA = K, FracB = L. then we have g(u) =



uN + gN−1u
N−1 + · · · g0 be some polynomial that θ satisfies over A. Since θ 6= 0, B is a

domain, can assume g0 6= 0. Then π(Z(θ)) ⊂ Z(g0).
There are two problems yet to address:
(1) We don’t know π(Z(θ)) = Z(g0). (This will follow from lemmas about integral exten-

sions in commutative algebra.)
(2) We don’t know π(Yi) is some component of Z(g0) (as opposed to a subset of a com-

ponent). (We could solve this by invoking Krull’s height theorem, to make Yi be height 1;
here we solve it by choosing the normalization (also known as projection) wisely.)

But, we know dim(Z(θ)) ≤ d− 1 as dimπ(Z(θ)) ≤ dim(Z(g0)) = d− 1.
To address (1): define η : X → Ad × A1, η(x) := (π(x), θ(x)), then by Gauss’s lemma

we know the minimal polynomial g(u) of θ over K = Frac(A) actually is in A[u] and
η(X) = Z(g). (See http://www.math.lsa.umich.edu/∼speyer/631/GaussLemma.pdf.)
Thus, η(Z(θ)) = Z(g, u) = Z(g0, u)⇒ π(Z(θ)) = Z(g0).

For solving (2): We show that, given

• X ⊂ An of dimension d
• Y2, . . . , Yr of dimension ≤ d− 1 and
• p ∈ An, not in Y2, . . . , Yr

we can find a linear projection normalization π : An → Ad such that

• π : X → Ad is a Noether normalization
• π : Yi → Ad is finite
• π(p) 6∈ π(Y2) ∪ · · · ∪ π(Yr) .

We only need to consider π1 : An → An−1 as the proof of Noether Normalization; think of
ker(π1) as a point in Pn−1. We show that the set of “good” kernels contains nonempty open
sets and since Pn−1 is irreducible, we know their intersection is nonempty and thus get a
projection we want. For the kernel to be “good”, we need ker(π1) /∈ X̄ ∩ Pn−1, Ȳ2 ∩ Pn−1,
. . . , Ȳ ∩ Pn−1 and the line through p and ker(π1) in Pn not intersecting ∪Yi.

Then the proof follows naturally as Z(θ) = ∪ri=1Yi irreducible components and we want
to show dim Y1(or Yi for any i = 1, ..., r)= d − 1. Choose p ∈ Y1, p /∈ Y2, . . . , Yr, choose
π : X → Ad as before so that π(p) /∈

⋃r
2 Yi. Let g0 = h1 · · ·hs so

⋃
Z(hj) = Z(g0) =

⋃
π(Yi).

So some hj must vanish at π(p), say h1(p) = 0. Now Z(h1) =
⋃r

1(Z(h1) ∩ π(Yi)) and Z(h1)
is irreducible so Z(h1) = Z(h1) ∪ π(Yi) for some i. But π(p) ∈ Z(h1) and π(p) 6∈ π(Yi) for
i ≥ 2, so we must have Z(h1) ⊆ π(Y1). So dimY1 = dimπ(Y1) ≥ dimh1 = d − 1, and we
already know dimY1 < d, as desired. (And, in fact, π(Y1) = Z(h1) since Y1, and hence π(Y1),
is irreducible.)

October 20
We can now tie everything together and show that the poset of ideals is graded by dimen-

sion. This means that we can show:
Claim 1 X is affine and irreducible, Y is a closed subvariety with Y $ X, then dimT <

dimX.
Claim 2 X is affine and irreducible, Z is an irreducible closed subvariety with dimT <

dimX − 1, then ∃ irreducible Y , s.t. Z $ Y $ X.
We can then deduce:
Corollary/Definition If f1, f2, . . . , fr are regular functions on irreducible X, then every

component of X
⋂
{f1 = 0}

⋂
{f2 = 2} · · ·

⋂
{fr = 0} has dimension greater than dimX − r.

And if fi is a nonzero divisor on X
⋂
{f1 = f2 = · · · = fr−1 = 0} for i = 1, 2, . . . , r, then



all components have dimension equal to dimX − r. The sequence f1, f2, . . . , fr ∈ A called a
regular sequence if fi is nonzero divisor in A/〈β1, β2, . . . , βi−1〉.

Corollary/Definition If dimX = d, x ∈ X, then there are f1, f2, . . . , fd such that {x}
is an irreducible component of Z(f1, f2, . . . , fr). Such a sequence is called a system of
parameters at x.

Corollary If A,B are closed in An and A
⋂
B 6= ∅, then codimA

⋂
B ≤ codimA +

codimB.
Corollary If A,B are closed in Pn and dimA + dimB ≥ n, then A

⋂
B 6= ∅ and

codimA
⋂
B ≤ codimA+ codimB.

October 22 Today’s goal was to describe the dimension of fibers of a regular map as a
function of the base space. More precisely:

Theorem. Let π : Y → X be a regular map of quasi-projective varieties, where dimX = m
and dimY = n. Then,

(1) Assuming Y is irreducible, dimπ−1(x) ≥ n−m for all x ∈ π(Y ).

(2) If π is dominant, i.e., π(Y ) = X, then there exists a nonempty open subset U of
X such that π(Y ) ⊇ U and dimπ−1(x) = n − m for x ∈ U . Note that simply the
existence a nonempty open U in π(Y ) is something we didn’t know before now: We
only knew that π(Y ) was Zariksi dense.

(3) If π factors as Y ⊆ X × PN → X, where Y is closed in X × PN , then the set

{x ∈ X : dimπ−1(x) ≥ k}
is Zariski closed for every k. Note this includes the fact that π(Y ) is Zariski closed.

We saw the two following interesting examples:

(1) Consider the map A2 → A1 defined by (x, y) 7→ x2 + y2. The fiber over 0 looks like
it’s just one point! The issue is that there is only one point over R, but over C we
actually get the union of two lines Z((x+ iy)(x− iy)) as expected.

(3) The statement in Shafarevich (3rd ed., Corollary to Thm. I.1.25) only requires that
π is surjective and X and Y are irreducible. This is not true1. Here is an example to
show that “surjective” certainly isn’t enough:

Let Y = ((A1 \ {0})× A1) q {pt} and X = A1, where π(x, y) = x and π(pt) = 0.
Then, {x ∈ X : dimπ−1(x) ≥ 1} = A1 \ {0} is not Zariski closed.

In (1) and (2), we freely restrict to affine subsets, since taking closure preserves dimension.

Proof of (1). Take a system of parameters f1, f2, . . . , fm at x. The fiber π−1(x) is then
Z(π∗f1, . . . , π

∗fm), and all components have dimension ≥ n−m (via induction on the result
from 10/17). �

Proof of (2). Embed ι : Y ↪→ AN . We can then factor π using the graph of π:

Y X × AN

X

π

(π, ι)

pr1

We can then use the following lemma from commutative algebra:

1See David Speyer’s post of MathOverflow: http://mathoverflow.net/a/184925/33088



Lemma (“Relative Noether Normalization”2). If π : Y → X is dominant, there exists a
linear map ψ : AN → Ad and a non-empty open subset U ⊆ X such that in the diagram

π−1(U) U × AN

U × Ad

U

pr1

id× ψ

pr1

the dashed arrow defined by restriction of id× ψ is finite and surjective.

This subset U is then contained in π(Y ), and dimπ−1(x) = d. Using the density of U in X,
the density of π−1(U) in Y , and the finiteness of the dashed arrow above, d = n−m. �

Proof of (3). We have the factorization

Y X × Pn

X

π

closed

pr1

We induce on m = dimX. We can assume Y is irreducible since the dimension of π−1(x) is
defined as the maximum dimension of an irreducible component of π−1(x). The image π(Y )
is closed since pr1 : X × Pn → X is a closed map; by replacing X with π(Y ) we can assume
π is surjective. Also, as X is now the image of an irreducible variety, it is irreducible in turn.

If k ≤ n − m, we are done by (1). Otherwise, by (2) there exists a nonempty open set
U in X such that dim π−1(x) = n − m < k for all x ∈ X. Letting Z = X \ U , we have
dimZ < dimX (using that X is irreducible). By the inductive hypothesis on π−1(Z) → Z
we are done. �

October 24
In today’s class, we introduced Grassmannians in three different ways. Let’s take V ∼= kn

as a k dimensional vector space. We want to construct a variety G(d, V ) with points corre-
spond to d-planes in V . In particular, when d = 1, the variety G(1, V ) becomes P(V ). So
Grassmanians provide a natural generalization of projective spaces.

First Way The projective space P(V ) can be interpreted as the quotient k∗\(V − {0}).
Similarly, we can define G(d, V ) as the quotient by group action of GLd, i.e.

G(d, V ) = GLd\(d× n matrix − {matrices whose rank < d})
.

2See http://www.math.lsa.umich.edu/~hochster/615W10/supNoeth.pdf for a proof. If one takes a
theorem about spaces Y and modifies it to a theorem about families Y over B whose fibers look like Y , one
usually calls the new theorem a relative version of the old one.



Second Way The idea is based on the analogue of projective space P(V ) being covered by
linear charts. Choose a d element subset I of {1, 2, · · · , n}. We have the containments:

{Full rank d× n matrices}
⊃ {d× n matrices whose I-indexed columns are linearly independent}
⊃ {d× n matrices with Idd in columns indexed by I}

Clearly we have:

GLd\{d× n matrices whose I columns are linearly independent}
∼= {d× n matrices whose I columns are the identity}

So G(d, V ) is covered by
(
n
d

)
copies of Ad(n−d), which we’ll call Schubert patches.

We can also do this in a coordinate free way. Given a decomposition V = A ⊕ B with
dimA = d, dimB = n− d, then we have an injection:

Homk(A,B) ↪→ G(d, V )

f 7→ {(a, f(a) ∈ A⊕B : a ∈ A}.

So, for every decomposition V ∼= A⊕B, we get a copy of Hom(A,B) ∼= Ad(n−d) in G(d, V ).
Third Way We can define G(d, V ) by using exterior algebra as below:

G(d, V ) = {ω ∈ P(
d∧
V ) : ω is of the form v1 ∧ v2 ∧ · · · ∧ vd}.

We have the following theorem:

Theorem. G(d, V ), as defined above, is a Zariski closed subset of P(
∧d V ).

This theorem gives rise to an embedding G(d, V ) ↪→ P(
∧d V ), which is called Plucker embed-

ding. The equations that define G(d, V ) in P(
∧d V ) are called Plucker relations. If we choose

a basis for V ∼= kn, then there are
(
n
d

)
coordinates on

∧d(V ), which are called Plucker coor-
dinates. See also Chapter 14 in Combinatorial Commutative Algebra by Ezra Miller, Bernd
Sturmfels.

Example. We have three ways to describe G(2, k4). First we can describe G(2, k4) as

GL2

∖(
a11 a12 a13 a14

a21 a22 a23 a24

)
where (aij) has rank 2.

In the third description, this corresponds to

(a11e1 + a12e2 + a13e3 + a14e4) ∧ (a21e1 + a22e2 + a23e3 + a24e4) =

det

(
a11 a12

a21 a22

)
e1 ∧ e2 + · · ·+ det

(
a13 a14

a23 a24

)
e3 ∧ e4

The reader may enjoy verifying that these 6 two by two determinants obey the relation
p12p34 − p13p24 + p14p23 = 0.

In the second description, G(2, k4) is covered by open linear charts. As an example, we

can take

(
1 0 w x
0 1 y z

)
∈ G(2, k4), which gives us an embedding A2×2 ↪→ G(2, k4) ↪→ P5.(

1 0 w x
0 1 y z

)
7−→ (p12 : p13 : p14 : p23 : p24 : p34) = (1 : y : z : −w : −x : wz − xy)



October 27
In today’s class we introduced Hilbert polynomials.

Definition. Let A be k[x0, . . . , xn] and consider M a finitely generated, graded A-module.
The hilbert function of M is

hfuncM (t) := dimkMt.

Theorem (Hilbert). There is a polynomial hpolyM (t) such that

hpolyM (t) = hfuncM (t) for t� 0.

We call such a polynomial the Hilbert polynomial of M . For X ⊂ Pn, we will denote
by hpolyX the Hilber polynomial of A/I(X).

Example. We consider X = P1. Since k[x, y]t = Spank{xt, xt−1y, . . . , yt}, we have that

hpolyX (t) = t+ 1.

Example. In general, for X = Pd we have that hpolyX (t) =
(
t+d
d

)
= (t+d)(t+d−1)···(t+2)(t+1)

d!
.

Example. For X a conic in P2, say X = Z(f), we have that

dimk(
A

I(X)
)t = dimk

k[x, y, z]t
f · k[x, y, z]t−2

= hfuncP2 (t)− hfuncP2 (t− 2) = 2t− 1,

for large t.

Example. Let X a degree d curve in P2, we have that

hpolyX (t) =

(
t+ 2

2

)
−
(
t+ 2 +−d

2

)
= dt+

3d− d2

2
.

We finished the class discussing the following result.

Theorem. Let X ⊂ Pn, say dimX = d. Consider π : X → Pd be a Noether normalization
of degree δ. Then

hpolyX (t) = δ
td

d!
+ (terms of lower order).

We did not prove this result, but we noticed it was equivalent to a purely algebraic one:

Theorem. Let M be a finitely generated, graded k[y0, . . . , yd] module, with rank δ over
k[y0, . . . , yd]. (Meaning that dimk(y0,...,yd) M ⊗k[y0,...,yd] k(y0, . . . , yd) = δ.) Then

hpolyM (t) = δ
td

d!
+ (terms of lower order).

As a final remark, we noticed that the fibers of a projection Pn → Pd are copies of Pn−d.
So δ is the scheme theoretic fiber size of X∩{ a generic Pn−d}. By this statement, we mean
that there is an open subset U of G(n− d+ 1, kn+1) over which this map is finite and there
is a non-empty U ′ ⊂ U over which fibers have scheme theoretic length δ. We talked about
how our various semi-continuity theorems allowed us to deduce there would be an open set
over which this map was finite with fibers of a fixed scheme theoretic length.

October 29
The topic of today’s class was Bezout’s Theorem.



Theorem (Bezout, Informally). Given a degree d and degree e curve in the plane, they
intersect at de points.

There are a few caveats with this statement:

• We need to work over projective space.
• We need to work over an algebraically closed field.
• We have to count with multiplicity
• The curves cannot have common factors.

Theorem (Bezout, more formally). Let k be an algebraically closed field. Let f(x, y, z)
and g(x, y, z) be homogeneous polynomials of deg d and deg e respectively, with no common
factors. Then the dimension of (k[x, y, z]/〈f, g〉)t is de for t sufficiently large.

That is, #Z(f, g) = dimk Ωf=g=0 ≤ de. Notice that dimP2 = 2 and dimZ(f) = 1 so
dimZ(f, g) = 0 because g is not a zero divisor on f , so we know that Z(f, g) is a finite set
of points in P2. We can choose coordinates so that these points do not lie on the line z = 0.
Then k[x/z, y/z] → ΩZ the affine coordinate ring, thought of as the open set z 6= 0, with
coordinates x/z and y/z, subjects onto the coordinate ring of Z the finite set of points in
Z(f, g). Note that k[x, y, z]t = Span(xt, xt−1y, . . . , zt) and dehomogenizing we can see that
this is just the span of (1, x/z, y/z, . . . , (x/z)t, . . . , (y/z)t) which for t sufficiently large is
everything in ΩZ .

Thus (k[x, y, z]/I(Z))t is the ΩZ span of (1, x/z, y/z, . . . , (x/z)t, . . . , (y/z)t), and for t� 0
this is everything. Note that I(Z) may be bigger than 〈f, g〉. For example, if we have the
circle x2 + y2 = 1 and the line y = 1 then 〈x2 + y2 − 1, y − 1〉 = 〈x2, y − 2〉 and the function
x is not in 〈x2, y − 1〉 but x is zero at this point of intersection.

Added by David Speyer What we want to say is that x2 + y2 = 1 and y = 1 intersect
in a non reduced scheme of length 2, but we aren’t allowed to say that this term. Once this
is allowed, the statement will be that the regular functions on the scheme {f = g = 0} have
dimension de.

Proof of Bezout. Since f 6= 0 and k[x, y, z] is a domain, the map multiplication by f from the
(t−d)th graded piece to the t graded piece is injective. So dimk(k[x, y, z]/fk[x, y, z])t = dt+
(stuff) and since g has no common factors with f , it is a nonzero divisor in k[x, y, z]/fk[x, y, z]
and therefore the multiplication by g map from the (t−e)th graded piece of k[x, y, z]/fk[x, y, z]
to the t graded piece is injective. So dimk(k[x, y, z]/(fk[x, y, z]+gk[x, y, z]))t = dt+(stuff)−
(d(t− e)) + (stuff) = de.

�

We can use Bezout to prove a lot of classical geometry theorems.
Also, degree assigns an integer to each curve, and is multiplicative. This is the first hint

we get at the Chow ring. A∗(P2) = A0(P2)⊕A1(P2)⊕A2(P2) where we are thinking of Ak(X)
as the set of formal sums of codimension k subvarieties of X up to an equivalence relation.
For example, A0(P2) = Z (since P is the only codimension 0 subvariety), A1(P2) = Z (where
we are thinking of this as degrees of curves) and A2(P2) = Z (where we are thinking of this
as numbers of points). So A∗(P2) = Z⊕ Z⊕ Z = Z[ζ]/ζ3 where ζ is the equivalence class of
a line. In the Chow ring, multiplication is roughly intersection.

What if we work in Pn? Then let f1, f2, . . . , fn ∈ k[x0, . . . , xn] be homogeneous polynomials
of degrees d1, . . . , dn.



Theorem. If Z(f1, . . . , fn) in Pn is zero dimensional, then dimk(k[x0, . . . , xn]/〈f1, . . . , fn〉)t =
d1 . . . dn for t� 0.

What is easy to show is that if fi is a non-zero divisor in k[x0, . . . , xn]/〈f1, . . . , fi−1〉 then
dimk(k[x0, . . . , xn]/〈f1, . . . , fn〉)t = d1 . . . di for t� 0.

Theorem (Macaulay, 1916). If f1, . . . , fi are homogeneous polynomials in k[x0, . . . , xn] and
codim(Z(f1, . . . , fi)) = i. Then f1, . . . , fi is a regular sequence.

Theorem (Cohen, 1946). Same holds for f1, . . . , fi ∈ A, if A is a regular local ring.

This leads to an important definition (which will not return this term) a Cohen-Macaulay
ring is a ring in which this holds.

October 31 We discussed the proof that a generic cubic in 4 variables contains 27 lines.
We mentioned (but did not prove a similar) that given 4 generic fixed lines in P3, there are be
finitely many lines meeting all of them. Intuitively, meeting a specific line is a codimension-1
condition on a moving line in P3, so meeting 4 of them should cut us down to a finite number
of points in G(2, 4).

Let C3 be the vector space of homogeneous cubics in w, x, y, z. Let X ⊂ P(C3)×G(2, k4)
be {(cubic,P1) : cubic|P1 = 0}. We claim that the projection X → G(2, k4) has fibers
P(dim C3−4)−1, which comes from the 4 coefficients of a cubic on a line. In more detail,
using the GL4 symmetry, we may assume the line is L = (∗ : ∗ : 0 : 0). If our cubic is
F (w, x, y, z) =

∑
Fijklw

ixjykzl, then FL = 0 ⇐⇒ F∗∗00 = 0. There are 4 terms involving
just powers of w and x. This is why the fibers have codimension 4.

So dimX = (dimC3 − 4)− 1 + dim(G(2, k4)) = dimC3 − 4− 1 + 4 = dimC3 − 1. Hence
π : X → P(C3) is a map of varieties of the same dimension. We know that the image of π is
closed. Suppose that codimπ(X) in P(C3) is c.

By the theorem of dimension of fibers, there is a dense open subset of π(X) where fibers
have dimension dimX − dim π(X), and everywhere else the fiber dimension is larger. After
counting 27 lines on the Fermat cubic (that is, verifying that the fiber of the Fermat cubic is
0-dimensional), we know there is a dense open subset of P(C3) with nonempty 0-dimensional
fibers. Since X is projective, we know that π(X) is closed. So we have deduced that
π(X) = P(C3). In other words, every cubic contains a line. Moreover, there is a dense open
subset of cubics with finitely many lines.

How many? The map π : π−1(U) → U has finite fibers and factors as inclusion into
U × G(2, k4) followed by projection onto U , so it is a finite map. We have found a fiber
whose naive size is 27, so we basically know that there is an open set over which the naive
size is ≤ 27. (More precisely, we need to check that U is normal and every component of
π−1(U) dominates U . As to the latter, there is only one component, since X is irreducible.)

Once we check that the scheme theoretic size of the fiber over the Fermat cubic is also 27,
we will know that the generic cubic has 27 lines.

November 3
In today’s class we talked about tangent spaces.
Let V be a finite dimensional k-vector space, X a Zariski closed subvariety of V , and

x ∈ X. We want to define a subspace TxX ⊆ V .

Definition. TxX = {~v ∈ V : d
dt
f(x+ t~v) = 0 for all f ∈ I(X)}.



Actually, we do not have to check that d
dt
f(x+ t~v) = 0 for all f ∈ I(X).

Lemma. If f1, · · · , fr generate the ideal I(X), it is enough to check f1, · · · , fr.

With this definition, we can consider a tangent space to y2 = x2 + x3 at (0, 0), which is
just all of V .

Definition. For X ⊆ V , TxX ⊆ V . The cotangent space T ∗x is the dual vectorspace which
is a quotient of V ∗. That is, T ∗xV = V ∗/Spanf∈I(X)((df)x)

Zariski observed that T ∗x ' mx/m
2
x.

Theorem. (Zariski) T ∗x ' mx/m
2
x

Note that this localizes: ifD(q) is some distinguished open containing x, then q−1mx/(q
−1mx)

2 '
mx/m

2
x.

For projective varieties, we can define TxX in any affine chart and get isomorphic results.

Definition. If X is irreducible, and x ∈ X, we have dimTxX ≥ dimX (proof in the book).
We call x to be a regular point of X if dimTxX = dimX. If X is irreducible, X is regular
at x if dimTxX = max dimYi where Yi are components of X that contain x. Moreover, in
this case, there is only one component that contains x.

Note that in this class, “nonsingular”, “smooth”, “regular” are all the same.

November 5
We want to use T ∗xX to check reducedness. Let X = MaxSpecA, x ∈ X, f1, ..., fd ∈ ΩX .

f1(x) = ... = fd(x) = 0.
If {x} = Z(f1, ..., fd), how do we know if I({x}) = 〈f1, ..., fd〉?
More generally, how to say 〈f1, ..., fd〉 is reduced at x?

Definition. Let I be an ideal of A and x a point of X = MaxSpecA. We say that I is
reduced at x if ∃f ∈ A, f(x) 6= 0, for which f−1I is reduced in f−1A.

In order for this to be a reasonable definition, we need to know two things:

• If A/I has no nilpotents, then f−1A/I has no nilpotents.
• If we have an open cover X = ∪Ui, Ui = D(fi), and f−1

i A/f−1
i I has no nilpotents,

then A/I has no nilpotents.

The first fact checks that being reduced at x is a local condition; the second checks that,
if X is reduced everywhere, then X is reduced.

Claim: Let X = MaxSpecA and let x be a point of X. Let f1, ..., fd ∈ A with f1(x) =
... = fd(x) = 0. Then, {x} is a reduced component of Z(f1, ..., fd) ⇔ f1, ..., fd span T ∗xX.

Note that requiring that f1, . . . , fd span mx/m
2
x is weaker than asking that f1, . . . , fd

generate mx as an A-module. For example, look at the equations v = u(u− 1) = 0. Then v
and u(u− 1) span the cotangent space at (0, 0) because the curves are transverse, but they
don’t generate 〈u, v〉 because they also intersect at (1, 0).

Proof. This is an immediate consequence of Nakayama’s lemma. Since f1, . . . , fd span
T ∗xX = mx/m

2
x, there exists a g with g(x) 6= 0, such that f1, . . . , fd generate g−1mx as a

g−1A-module. �

We have two ways to work with functions near x.



Definition. ΩX,x = lim−→
U3x

ΩU .

On a domain, ΩX,x = {functions regular on some neighborhood of x}. In differential ge-
ometry, this is “germs of functions at x”.

We also have

Definition. Completion: Ω̂X,x = lim
∞←t

ΩX/m
t
x

Theorem. ΩX,x injects into Ω̂X,x. If f(x) 6= 0, then f is a unit in Ω̂X,x.

X is regular x ⇔ Ω̂X,x
∼= k[[T ∗xX]].

We always have a surjection k[[T ∗xX]] −→ Ω̂X,x.

November 7

Definition. Let X be closed in V ∼= An. We define the tangent bundle TX ⊂ V × V to
be

{(x,~v) : x ∈ X, ~v ∈ TxX}.

We remarked the following:

• TX is Zariski closed (its equations are g(x) = 0 and
∑n

i=1 vi
∂g
∂xi

(x) = 0 for all

g ∈ I(X), where ~v = (v1, . . . , vn)). It is enough to consider gi generators for I(X).
• We have a projection TX → X whose fibers are TxX.

Warning (Added by David Speyer) The above equations may not define the radical ideal
of TX. For example, if X = {(x1, x2) : x1x2 = 0} then the equations described above
are x1x2 = x1y2 + x2y1 = 0. The element x1y2 is not in the ideal they generate, but
(x1y2)2 = (x1y2)(x1y2 + x2y1)− (y1y2)(x1x2) is.

Definition. A vector field on X is a regular section v of the projection TX → X.

Definition. A 1-form is a regular function ω : TX → k such that ω|TxX is linear on each
fiber of TxX. The collection of 1-forms on X is written Ω1

X .

We remarked the following:

• If f is a regular function on X, then df is a 1-form (if (x1, . . . , xn) are coordinates on
the first copy of V in TX ⊂ V × V and (v1, . . . , vn) are coordinates on the second,
then df =

∑n
i=1

∂f
∂xi
vi).

• d(u+ v) = du+ dv, d(uv) = u dv + v du, and d(z) = 0 for all z ∈ k. (?)

Theorem. Let A = OX . We have OTX ∼= A[df ]f∈A/(?).

Proof. Let R denote the quotient ring on the right hand side. We claim that if x1, . . . , xn
generate A/k, then x1, . . . , xn, dx1, . . . , dxn generate R. To see this, note that the xi generate
A, so if f = p(x1, . . . , xn) for some polynomial p, then df =

∑n
i=1

∂p
∂xi
dxi. Writing A =

k[x1, . . . , xn]/I and S = k[x1, . . . , xn, v1, . . . , vn]/(g(x),
∑n

i=1
∂g
∂xi

(x)vi ∀g ∈ I), we clearly

have maps S → R and R → S (where A → A ⊂ S). Explicitly, the first map is given
on generators by xi 7→ xi and vi 7→ dxi. The second map is given by lifting f ∈ A to
p(x1, . . . , xn) ∈ k[x1, . . . , xn] and taking df 7→

∑n
i=1

∂p
∂xi
vi. We let the reader check that these

maps are inverse (it’s fun!). �



Correction (Added by David) The ring A[df ]f∈A/(?) may have nonzero nilpotents (as
shown above), so it cannot be the ring of regular functions on anything. The right statement
is that OTX is A[df ]f∈A/(?) modulo the ideal of nilpotents.

Being a vector field or a 1-form is a local notion. More precisely, let X be affine, Ui be an
open affine cover of X, and for all x ∈ X let v(x) ∈ TxX. If v|Ui

is a vector field for all i,
then v is a vector field.

Proof. We need to show that v : X → TX is regular, and we can just check regularity on
each Ui. This identifies the part of TX over U with TU (there is a little to check here...). �

Finally, we noted that for any regular map f : X → Y with f(x) = y, we get maps
f∗ : TxX → TyY and f ∗ : T ∗y → T ∗x , along with corresponding globalizations f∗ : TX → TY

and f ∗ : Ω1
y → Ω1

x. The last map is the pushforward map on 1-forms. These are functorial.

November 10
Given a linear map π : V → W , we examined open sets built from points x ∈ X where x

satisfies the condition of injectivity on the induced map π : TxX → W .

Lemma. {x|π : TxX → W is injective} is open in X.

Proof. (Sketch) The idea of this proof is to look at the projectivization of the kernel of π
at each point x ∈ X. To do so, projectivize TX; ie. just as TX sits in X × V , we have
P(TX) ⊆ X × P(V ). Examine P(TX) ∩ (X × P(k)) ⊆ X × P(V ). The projection of this
to X is “where there is a kernel”; i.e. we get a closed set, defined by the condition in the
statement of the lemma. �

Corollary. {x ∈ X| dimTxX = dimX} is open (i.e. the set of smooth points is open)

Proof. Since X is irreducible, we know dim TxX ≥ d, for all x. We can re-write the condition
of equality as ∃π : V → W such that dimW = d and π : TxX → W is injective. Thus,
{x| dimTxX = d} =

⋃
π{x|π : TxX → W injective}, where the union ranges over π : V → W

surjective, with dimW = d, which gives us the set in the statement of the corollary. �

Corollary. dimTxX is upper semi-continuous (i.e. {x ∈ X| dimTxX ≥ r} is closed)

Lemma. Suppose X is irreducible of dimension d. Let π : V → W be a linear surjection with
dim W = d, π : X → W dominant, and Frac(OX)/Frac(OW ) a separable field extension.

Then {x ∈ X|π : TxX → W is injective} is a non-empty open set in X.

Proof. Choose coordinates (using relative Noether Normalization) (x1, . . . , xd, x1, . . . , yn−d)
on V such that π(x1, . . . , xd, y1, . . . , yn−d) = (x1, . . . , xd). Let gi be the minimal polynomials
of each yi over the field k(x1, . . . , xd). By separability, ∂gi

∂yi
6= 0 on X. Let U ⊆ X be the

open set defined by where the ∂gi
∂yi

are non-zero. gi(x1, . . . , xd, yi) is 0 on X, so dgi = 0 on X.

Thus, ∂gi
∂yi
dyi + Σ ∂gi

∂xj
dxj = 0 on X. (rearranged, we have dyi = −(∂gi

∂yi
)−1Σ ∂gi

∂xj
dxj on U .)

This tells us that for x ∈ U , T ∗xX is spanned by the 1-forms dx1, . . . , dxd. So π : TxX → W
is injective (and thus is in fact an isomorphism). �

We give a very typical example of why this lemma requires separability:

Example. Let char k = p; take the set X ⊂ A2 where X = {(x, y)|y = xp}. Define
π : X → Y via projection onto the y coordinate; this induces a non-separable field extension
of fraction fields of coordinate rings. The line T(x,y)X is horizontal for all (x, y) ∈ X; so the
set in the above lemma is not non-empty for this non-separable example.



Corollary. If X is irreducible, {x ∈ X|X is smooth at x} is a non empty open set.

The idea of the proof of this corollary is to pick a separable Noether Normalization and
apply the above lemma. The existence of such a Normalization is proven in a link on Professor
Speyer’s website.

Corollary. If X of dimension d is smooth, then TX is a bundle; i.e. there is an open cover
Ui of X for which TUi ∼= Ui × Ad

November 12
We began by fulfilling an old promise:

Theorem. Let π : Y → X be a separable finite map between varieties of the same dimension.
Then there is a dense open set U ⊂ X so that the naive and the scheme theoretic length of
π−1(x) match for x ∈ U .

Proof Sketch. Let dimY = dimX = d. Take a separable noether Normalization ψ : X → Ad.
Then there is a dense open U ′ ⊂ X on which TxX → Tψ(x)Ad is an isomorphism, and a
dense open Y ⊂ π−1(U) on which TyY → Tπ(ψ(y))Ad is an isomorphism. (Since π and ψ are
separable, so is π ◦ ψ.) So there TyY → Tπ(y)X is an isomorphism for y ∈ V . This gives a
dense open in Y , but we want a dense open in X. Let K = Y \ V . Then dimK < dimY ,
so π(K) 6= X; take U = X \K. �

We now prove the Sard-Bertini theorem:

Theorem. Let k have characteristic 0. Let π : Y → X be a dominant map of smooth
irreducible varieties. Then there is a nonempty open U ⊂ X so that π−1(x) is smooth for
x ∈ U .

Proof sketch. Let dimX = d and dimY = e.
We first show that there is a nonempty open U in Y such that π∗TyY → Tπ(y)X is surjective

for y ∈ U (and, hence, π−1(π(y)) is smooth at y.) Using relative noether normalization, write
π as Y → X×Ae−d → X. Apply the previous theorem to the first map to get a dense open in
Y where TyY → Tπ(y)X×Ae−d is bijective; then the projection onto Tπ(y)X will be surjective.

Let K = {y ∈ Y : rank(π∗ : TyY → Tπ(y)X) ≤ d}. We need to show that π(K) is not
dense in X. Let K0 be the smooth points of K, it is enough to show that π(K0) is not dense
in X. Suppose to the contrary that π : K0 → X is dominant. Then, applying the result
of the first paragraph to K0, there is a nonempty open subset of K0 where TyK0 → Tπ(y)X
is surjective. But this map factors as TyK0 → TyY → Tπ(y)X, and TyY → Tπ(y)X is not
surjective by the definition of X, a contradiction. �

November 14
This class was canceled, but here is something like what I would have said. We pointed

out (November 7) that being a vector field or a 1-form is a local notion.
Let X be a quasi-projective variety and let Ui be an open affine cover. For every x in X,

let v(x) be an element of TX. We will say that v is a vector field on X if v|Ui
is a vector

field for each Ui. This is true for one open affine cover if and only if it is true for all of them.
Similarly, for every x ∈ X, let ω(x) be an element of T ∗xX. We say that ω is a 1-form on

X if ω|Ui
is a 1-form for each Ui. Again, this is true for one open affine cover if and only if

it is true for all of them.



Let’s see some examples. P1 can be covered by two copies of A1. Let x be a coordinate on
the first A1, so a vector field on x is of the form f(x) ∂

∂x
for some f(x) ∈ k[x]. If we switch to

the other chart, where the coordinate is x−1, then this vector field becomes −f(x)x−2 ∂
∂x−1 .

This is a regular vector field on the other chart if and only if −f(x)x−2 is a polynomial in
x−1, i.e., if and only if deg f ≤ 2. So the space of global vector fields on P1 is 3 dimensional;
they are all of the form (a+bx+cx2) ∂

∂x
. A similar argument shows that there are no nonzero

1-forms on P1.
Let’s look at an example where there are global 1-forms: The elliptic curve ZY 2 = X3 +

aX2Z + bXZ2 + cZ3 in P2. (In this example, k does not have characteristic 2 or 3.) Let
U be the open chart Z 6= 0. So coordinates on U are given by x := X/Z and y := Y/Z,
obeying the relation y2 = x3 + ax2 + bx+ c. We assume that the cubic x3 + ax2 + bx+ c has
no repeated roots. Set ω = dx

2y
= dy

3x2+2ax+b
. The first formula for ω shows that ω is regular

where y 6= 0, the second formula shows that ω is regular where 3x2 + 2ax+ b 6= 0. Since we
are assuming that x3 + ax2 + bx + c and 3x2 + 2ax + b have no common roots, this shows
that ω is regular everywhere. Since Ω1

U is generated as an OU module by dx and dy, and we
have dx = (2y)ω and dy = (3x2 + 2ax+ b)ω, this shows that Ω1

U is generated by ω as a OU
module (and freely so).

Sidenote: What is an actual global formula for ω? Well, you’d have to know how to
express 1 as a k[x] linear combination of x3 + ax2 + bx+ c and 3x2 + 2ax+ b. Let’s just do
a example: y2 = x3 + 1. Then (x3 + 1)− x

3
(3x2) = 1. So

ω =
(

(x3 + 1)− x

3
(3x2)

)
ω =

(
y2 − x

3
(3x2)

)
ω =

y

2
dx− x

3
dy.

So, Ω1
U is a free OU module generated by ω. Does ω extend to the whole elliptic curve? The

point of the elliptic curve not in U is at (0 : 1 : 0). Local coordinates are u := X/Y = x/y
and v := Z/Y = 1/y, obeying the relation v = u3 + au2v+ buv2 + cv3, from which we derive
that

dv

3u2 + 2auv + bv2
=

du

au2 + 2buv + 3cv2 + 1
.

After a surprisingly annoying computation, we obtain that

ω =
dy

3x2 + 2ax+ b
=

dv−1

3(u/v)2 + 2a(u/v) + b
=

−v−2dv

3(u/v)2 + 2a(u/v) + b
=

−dv
3u2 + 2auv + bv2

=
−du

au2 + 2buv + 3cv2 + 1

and the last formula is manifestly regular at (0, 0). In fact, the space of 1-forms on the whole
elliptic curve is 1-dimensional, spanned by X. See your homework for a similar example.

Finally, the rant. The morally right thing to do is to define TX, and the way to do it is
clear: Cover X by Ui, and then glue together the TUi. But we aren’t allowed to glue abstract
varieties, only to embed them all in a common projective space. I tried to do this and screwed
up: This was Problem 7 from Problem Set 9. I did find a way to fix the construction, but
it is too horrible to give. (See http://mathoverflow.net/questions/186396. ) Note also
that we haven’t even mentioned cotangent bundles in this course. They only make sense if
X isn’t too singular; let’s say for now that X is smooth of dimension d. Then the way we
should define them is to cover X by Ui for which TUi is free. Let the gluing between TUi and
TUj be given by a function gij : Ui ∩ Uj → GLd. Then we should be allowed to define the
cotangent bundle by just using the dual gluing maps: (gTij)

−1. But, again, we aren’t allowed



to do abstract gluing, and proving that this gives a quasi-projective variety seems to require
some serious theorems. So all of this has to wait for next term, when I am allowed to glue
together a variety without finding a way to squeeze it into a projective space.

November 17
Why are curves so nice? Here are 3 reasons.

(1) It is easy to tell whether a rational function on a smooth curve is regular at a point
(the same is true on a normal variety of any dimension).

(2) It is easy to desingularize curves (it is easy to normalize in any dimension, and it is
possible (by Hironaka) to desingularize in characteristic zero).

(3) Rational maps from smooth curves to projective varieties extend to global maps.

Let’s elaborate on (1): let X be a 1-dimensional irreducible variety and let x be a smooth
point of X. Write Frac(X) for the rational functions on X, then ΩX,x is a dvr (that is, the
maximal ideal mx ⊂ ΩX,x is principal). A generator ux of mx is called a uniformizer at x.

For any f ∈ Frac(X)×, define νx(f) to be the unique integer such that f = u
νx(f)
x a,

where a ∈ ΩX,x is some unit. Then, νx : Frac(X)× → Z defines a valuation, meaning that
νx(fg) = νx(f) + νx(g) and νx(f + g) ≥ min{νx(f), νx(g)} with equality if νx(f) 6= νx(g).
Formally, define νx(0) =∞. Then, f ∈ Frac(X) is regular at x iff νx(f) ≥ 0.

Now, consider (2): let X = MaxSpec(A) be an irreducible affine variety and let Ã be the
integral closure of A in Frac(A), then X̃ = MaxSpec(Ã) is the normalization of X. It is
clear that Ã is radical, and if A is finitely-generated, then so too is Ã (proof in Shafarevich).

Example: Let A = k[x, y]/(y2 − x3), then θ := y
x

satisfies θ2 = x, so Ã = k[θ] is the
integral closure of A, where x = θ2 and y = θ3.

A variety X is normal at x if there is an open affine U = MaxSpec(A) around x, where
A is integrally closed in Frac(A). To check that this definition is local, one should check that:
(i) A is integrally closed in Frac(A), then f−1A is integrally closed in Frac(f−1A) = Frac(A);
(ii) if X = ∪iUi is an open affine cover with Ui = MaxSpec(Ai) and X = MaxSpec(A)
where each Ai is integrally closed in Frac(Ai) = Frac(Ui), then A is integrally closed in
Frac(A) = Frac(X). Using this, we can talk about normality on quasi-projective varieties
using the local definition.

Finally, consider (3): if X is a smooth curve, U ⊂ X is a dense open subset, and ϕ : U →
Y ⊂ Pn is a rational map with Y closed in Pn, then ϕ extends to a regular map on X.

Proof. Let x ∈ X\U , then it suffices to extend ϕ as a map to Pn defined near x. Let
ϕ(t) = (ϕ0(t) : . . . : ϕn(t) with ϕi ∈ Frac(X) not all zero, then WLOG say νx(ϕ0) ≤ νx(ϕi)
for i = 1, . . . , n. We can extend by (1: ϕ1

ϕ0
: . . . : ϕn

ϕ0
), which is regular near x. �

In particular, ifX, Y are smooth projective curves over k such that Frac(X)/k ' Frac(Y )/k,
then X ' Y .

November 19
Today we discussed Ramification and the Riemann-Hurwitz theorem.

Definition. Suppose that X and Y are smooth curves with x ∈ X, y ∈ Y and π : Y → X a
non-constant surjective map. Moreover, assume that uy and ux are uniformizers in the local
rings ΩX,x and ΩY,y respectively. We write mx = uxΩX,x. If vx is the evaluation map, note
that vx(ux) = 1.



(1) We define the ramification of π at y to be vy(π
∗ux).

(2) Equivalently, we can define the ramification by dimk(ΩY,y/ΩY,ymx).

(3) In the special case vy(π
∗Ux) = 1 we say that π is unramified at y. This special case

is equivalent to dπx : TyY −→ TxX being an isomorphism. This is in turn equivalent
to the dual map (dπx)

∗ : T ∗xX −→ T ∗y Y being an isomorphism.

If vy(π
∗ux) = e, then {1, uy, u2

y, ..., u
e−1
y } is a basis for the quotient ΩY,y/ΩY,ymx.

Next we proved the following result. Note that we are still assuming X and Y to be
smooth curves:

Theorem. Let π be a finite map of degree n. Then for any x ∈ X the following relation
holds: ∑

y∈π−1(x)

ey = n.

In other words, the scheme theoretic length of π−1(x) is always n.

Corollary. Suppose that X is a smooth projective curve and that f ∈ Frac(X) is non-

constant. Then
∑
x∈X

vx(f) = 0.

Proof. Think of f as a map X −→ P1. Then:∑
x∈X

vx(f) =
∑

y∈f−1(0)

ey −
∑

y∈f−1(∞)

ey = deg f − deg f = 0.

�

Let ω = fdux be a rational 1-form on X for x ∈ X, f ∈ Frac(X) and ux a uniformizer. We
extend the valuation map vx to rational 1-forms by defining vx(ω) = vx(f). One does need to
check that this is well-defined. That is, one needs to check that this extension is independent
of the choice of uniformizer ux. This leads us to the Riemann-Hurwitz formula:

Theorem. There is a number g (dependent on X) such that:∑
x∈X

vx(ω) = (2g − 2) for any non-zero rational 1-form ω on X.

Moreover, in Char(k) = 0, if π : Y −→ X is a non-constant map of smooth projective
curves, then:

2gY − 2 = (deg π)(2gx − 2) +
∑
y∈Y

(ey − 1).

We call this number g the genus of X. We end this discussion with the following example:

Example. We will calculate the genus of P1. Notice that P1 = Uy 6=0∪Ux 6=0 = A1∪A1. Also,
dx

x
is a non-zero rational 1-form on P1. Furthermore, y = x−1. So, in terms of y,

dx

x
=

dy−1

y−1
= −y

−2dy

y−1
= −dy

y
. Therefore

dx

x
has a simple pole at x = 0, and −dy

y
has a simple

pole at y = 0 (x =∞). It follows that
∑
x∈X

vx(ω) = (−1) + (−1) = −2 = 2g − 2 =⇒ g = 0.



November 21
Today we proved the Riemann-Hurwitz theorem and introduced some new vocabulary. In

all what follows X is a smooth projective curve, ω is a rational 1-form on X and u is an
uniformizer at x ∈ X.

Theorem (Riemann-Hurwirtz). Let k have characteristic 0 and let X and Y be smooth
irreducible projective curves. Consider π : Y → X a non-constant map. Then

2gY − 2 = deg(π)(2gX − 2) +
∑
y∈Y

(ey − 1).

To prove the theorem, one needs to compute
∑

y∈Y vy(π
∗ω), for ω a rational 1-form on X

such that π∗ω generates T ∗y Y . Then if ω = gdux, we have that

vy(π
∗ω) = vy(π

∗g) + vy(π
∗dux) = eyvx(ω) + ey − 1.

Note that we used characteristic 0 to see that π∗ux vanishes to order ey − 1 at y: If ey ≡
0 mod p, then π∗ux would vanish to higher order.

Summing over y,∑
y∈Y

vy(π
∗ω) =

∑
x∈X

∑
y∈π−1(x)

eyvx(ω) +
∑
y∈Y

(ey − 1) = deg(π)
∑
x∈X

vx(ω) +
∑
y∈Y

(ey − 1)

so
2gy − 2 = deg(π)(2gx − 2) +

∑
y∈Y

(ey − 1).

Corollary. For a map π : Y → X as in the theorem, we have that gY ≥ gX .

We concluded with a list of definitions:

Definition. (1) A divisor D is a finite formal Z-sum of points on X
(2) The degree of a divisor D =

∑
D(x)x is deg(D) =

∑
D(x).

(3) For f ∈ Frac(X), we have that div(f) =
∑

x∈X vx(f)x.
(4) For ω a rational 1-form, we have that div(ω) =

∑
x∈X vx(ω)x.

(5) A divisor of the form div(f) is called principal.
(6) A divisor of the form div(ω) is called canonical.
(7) The divisors D and E are called rationally equivalent if D − E is principal.

November 24
Our aim today is to talk about the complex analytic and topological side of algebraic

geometry, in particular with respect to genus and the Riemann-Hurwitz theorem.
We start with the following example:



Example. Consider CP1. Recall we can obtain CP1 by gluing together two copies of the
complex plane C. We can visualize this in the following ways:

CP1 =



C ∪ C

z
∪

w=z−1

w

∪ =

We call CP1 the Riemann sphere .

This example suggests a relationship between algebraic and topological objects:

Algebraic objects Topological objects{
Smooth curves

over C

} {
Smooth oriented surfaces

(i.e. dim 2 C∞-manifolds)

}
{

Zariski closed

subsets of CPn
} {

Analytically closed

subsets of CPn
}

Thm.

We conclude from the implications above that smooth projective curves are smooth orientable
compact surfaces. In addition, we have the following non-obvious facts that allow us to fill
in the dashed implication in the second line above:

Theorem. (1) If an algebraic variety over C is connected in Zariski topology, then it is
connected in the analytic topology.3

(2) If X is a smooth connected compact complex manifold of real dimension 2, then X
can be embedded into CPn,4 and is Zariski closed in CPn5.

Next, we want to understand what elliptic curves correspond to topologically. To do so,
we need to understand what ramification corresponds to analytically.

Consider the following regular map of complex algebraic curves, visualized topologically
as a map between oriented surfaces:

3Prof. Speyer said this result is in Serre’s “Géométrie algébrique et géométrie analytique”; I couldn’t find
it there, but it is Prop. 2.4 in SGA1, Exp. XII. Added by Prof. Speyer: It certainly follows from GAGA:
For example, Theoreme 1 states in particular that H0(X,Ω) ∼= H0(Xan,Ωan). The left hand side is locally
constant functions in the Zariski topology; the right hand side is locally constant functions in the analytic
topology. For non-singular X, Proposition 12 states that the singular cohomology group H0(Xan,C) can
be computed algebraically, so the number of connected components of X can be as well. But I agree that I
don’t see this corollary singled out anywhere in GAGA.

4See, for example, Thm. 17.22 in Forster’s Lectures on Riemann surfaces.
5This is Chow’s Theorem, which states that if X ⊂ Pn is a closed C-analytic submanifold, then X is

Zariski closed in CPn. This is Prop. 13, no 19 in Serre’s “Géométrie algébrique et géométrie analytique”.



f

x

If f is unramified at x, then f induces a local homeomorphism in every sufficiently small
analytic neighborhood around x. If f is ramified at x, then f induces the map z 7→ ze in
local coordinates in every sufficiently small analytic neighborhood around x, where e is the
ramification of f at x. Zooming into a neighborhood, the map corresponds to that obtained
by making a “branch cut”. We visualize this as below for e = 2:

f

x

z

z2

Note that an angle θ upstairs maps to an angle e · θ downstairs, if we think of going around
the neighborhood upstairs as having an angle 2π.

We are now ready to look at elliptic curves.

Example. Consider the elliptic curve E = {y2 = x3−x} ⊂ C2, together with the projection
p : E → A1 mapping (x, y) 7→ x, which is a degree 2 cover of A1. This map is ramified at
x = −1, 0, 1; the map p also extends to a map E → CP1 where E is the projective closure of
E in CP2, and this extension gains one more ramification point at x =∞. As in the diagrams
above, we think of A1 and its compactification CP1 topologically, marking the ramification
points x = −1, 0, 1,∞:

x

0 1−1
0 1−1

∞

We now want to determine how E covers CP1. To do so, we look at the preimage of the angle
drawn around x = 0. Above, we recalled that an angle θ maps to an angle 2 · θ in the base
space since the ramification is 2 at x = 0, so the preimage of this angle is an angle π around
(0, 0). By the same argument around the points −1, 1,∞ which also have ramification 2, we
obtain the following picture of E and E:



∞ ∞

∞∞

(0,0)

(1,0)

(−1,0)

(1,0)

(−1,0)

where each maize region maps to the region in CP1 above, and similarly for the blue regions.
Note that following paths in CP1 above in the covering space E, we get the identifications
of edges labeled above, hence topologically E is a torus S1 × S1, i.e., it has genus 1.

In general, if H = {a2hx
2h + a2h−1x

2h−1 + · · ·+ a0} ⊂ C2 is a hyperelliptic curve, then its
closure in CPh+1 is a genus h− 1 surface. Since this is more difficult to visualize, we instead
opt to compute the Euler characteristic.

Let π : X → CP1 be a finite cover of degree d; π is ramified over z1, . . . , zr ∈ CP1 with
ramification e1, . . . , er. Choose a regular CW decomposition of CP1 with vertexes z1, . . . , zr,
with V vertexes, E edges, and F faces; note V − E + F = 2. The preimage of this CW
structure gives a CW structure on X, with dF faces and dE edges as expected, but only
dV −

∑
(ei − 1) vertexes because of ramification. We therefore have

2− 2gtopX = χtop(X) = dF − dE +
(
dV −

∑
(ei − 1)

)
= d(F − E + V )−

∑
(ei − 1)

= 2d−
∑

(ei − 1)

This is the Riemann-Hurwitz formula, for genus defined as the degree of a rational 1-form!

Conclusion. Genus, as defined by 2g − 2 = deg div(ω), is topological genus.

Corollary. Over C, genus is a non-negative integer.

We remark that Weil’s calculations of degrees of rational 1-forms on curves over fields of
positive characteristic prompted him to look for a generalization of genus to algebraically
closed fields other than C.

In general, however, working over fields of positive characteristic can get quite cumbersome.
We recall from the last problem set that the residue of a rational 1-form is well-defined over
a field of characteristic 0. Indeed, this can be seen as an analogue of the residue formula
from complex analysis: if γ is a closed loop around z = 0,∮

γ

f(z) dz = (2πi) res0 f,

and if we write f(z) =
∑
aiz

i as a Laurent series, we have res0 f = a−1. In the algebraic
setting, if X is a smooth curve, with ux a uniformizer at x ∈ X and ω a rational 1-form,
we can write ω = (

∑
aiu

i
x) dux, and defined resx ω = a−1. While we were able to show this

without too much pain in the last problem set for characteristic 0, there is no good proof of
this in positive characteristic.6

November 26

6Serre in Groupes algébriques et corps de classes remarks that the proofs for arbitrary characteristic are
“artificielles” (p. 35).



Let X be a smooth connected projective curve. The only regular functions on X are
constants. The rational functions on X, called Frac(X), are a transcendental degree 1
extension of k.

For a divisor D on X, we define

H0(O(D)) = {f ∈ Frac(X) : div(f) +D ≥ 0}.
The condition is equivalent to saying that for all x ∈ X, we have νx(f) ≥ −D(x), where
νx(f) is the valuation (number of zeros). We also define

H0(Ω(D)) = {ω ∈ Frac(Ω(X)) : div(ω) +D ≥ 0}.
As an example, we looked at

H0(O(2p+ q)) =

{
f :

f is regular at x 6= p, q, has at
most a double pole at p, and at
most a single pole at q

}
Notice that if degD < 0, then H0(O(D)) = 0. This is because if f ∈ H0(O(D)) \ {0},

then div(f) +D ≥ 0, so deg div(f) + degD ≥ 0, giving degD ≥ 0.

Proposition. dimH0(O(D)) ≤ max{degD + 1, 0}
Proof. By induction on degD. The case degD < 0 we already noticed. In general,
suppose we’ve proven it for degD = d. Let degD′ = d + 1, so D′ = D + p. Then
H0(O(D)) ≤ H0(O(D′)) and dimH0(O(D′))/H0(O(D)) = 0 or 1. Now dimH0(O(D′)) ≤
dimH0(O(D)) + 1 ≤ d+ 1 + 1. �

Theorem (Riemann-Roch, often-good-enough version). dimH0(O(D)) ≥ degD + 1− g.

Theorem (Riemann-Roch). dimH0(O(D))− dimH0(Ω(−D)) = degD + 1− g.

Let’s take a look at that quantity g. Take K = div(ω), where ω ∈ Frac(Ω(X)) \ {0}. The
map H0(O(K −D))→ H0(Ω(−D)) given by f 7→ fω is an isomorphism. If Riemann-Roch
holds, then dimH0(O(D))− dimH0(O(K −D)) = degD− g+ 1 and dimH0(O(K −D))−
dimH0(O(D)) = deg(K−D)− g+ 1. Adding the two equations gives 0 = degD+ deg(K−
D)− 2g + 2, so degK = 2g − 2. Therefore if Riemann-Roch holds for some g, then g is the
familiar genus.

Put D = 0, so 1 − dimH0(Ω(D)) = 1 − g, giving dimH0(Ω(D)) = g. We have finally
proved that g is a nonnegative integer.

As an example, we asked, what is a genus 0 curve? Let X be a connected smooth projective
curve of genus 0. Let p ∈ X. Then dimH0(O(p)) ≥ deg(p) + 1 − g = 2, so there is a
nonconstant f ∈ H0(O(p)). Now f : X → P1 has f−1(∞) = {p} with multiplicity 1, so
X ∼= P1.

What about g = 1? Let X be genus 1 and p ∈ X. We have dimH0(O(2p)) ≥ 2, so there
is a degree 2 map f : X → P1 satisfying f−1(∞) = {p} with multiplicity 2. We see that
f is ramified at 4 points, one of which is p, and that X \ {p} looks like the elliptic curve
y2 = (x− a)(x− b)(x− c), where a, b, c are the other points where f is ramified.

What about g = 2? Let K be a canonical divisor with K = div(ω), so dimK = 2. We’ve
shown that dimH0(Ω(K)) = 2 (i.e., dimH0(Ω(K)) = degK + 1 − g + dimH0(Ω(−K))).
Let ω1, ω2 be a basis for H0(Ω(K)). Take f = ω1

ω2
, so that f : X → P1 is degree 2 with

#f−1(∞) = #{ω2 = 0} = 2. By similar reasoning as above, the curve looks like

y2 = (x− a)(x− b)(x− c)(x− d)(x− e),



with branch points a, b, c, d, e,∞.
What about g = 3? The same argument as before gives dimH0(O(K)) = 3. Fixing a

basis ω1, ω2, ω3, we look at the map X → P2 given by x 7→ (ω1(x) : ω2(x) : ω3(x)). The
image of this map is either smooth of degree 4, or is a two-fold cover of a conic.

December 1
Today we’re taking the first step towards the proof of the Riemann-Roch Theorem:

Theorem (Riemann-Roch). Suppose X is an irreducible smooth projective curve of genus
g, and D is a divisor on it, then

dimH0(Ω(D))− dimH0(Ω(−D)) = degD − g + 1

Let’s consider a simple case: D = z1 + · · ·+ zd, where di are distinct points on X. We’ve
given an inductively proof of the following fact:

dimH0(Ω(D)) 6 degD + 1 = d+ 1

If we unpack the inductive proof, we’ll see what is going on: if two functions f and g in
H0(Ω(D)) have the same coefficients on their poles at z1, · · · , zd, then f − g is a constant,
so that we can get the following exact sequence:

0 −→ k −→ H0(Ω(D)) −→ kd,

in which the last map is obtained by taking the coefficient at each pole. Notice that a
function on X has poles nowhere is a constant function, so the kernel is k. From the exact
sequence we see that dimH0(Ω(D)) is at most d+ 1.

For any rational 1-form η on X, we have∑
x∈X

resxω = 0.

So if f ∈ H0(Ω(D)) and ω ∈ H0(Ω), we’ll get:

0 =
∑
x∈X

resx(fω) =
d∑
i=1

reszi(fω)zi ,

which provides a linear constraint on the image of H0(Ω(D)) in kd. If we take g = dimH0(Ω),
then this suggests that dimH0(Ω(D)) might be d+ 1− g, as we impose g linear constraints.
More carefully, we actually get constraints from H0(Ω)/H0(Ω(−D)), whose dimension is
equal to g − dimH0(Ω(−D)). Suppose D > 0, then we’ll get:

dimH0(Ω(D)) 6 1 + (d− (g − dimH0(Ω(−D)))).

Thus the Riemann-Roch Theorem basically says that the only obstacle to a rational function
having specified pole expansion is that

∑
x∈X resx(fω) = 0 for any rational 1-form w on X.

We’re going to prove the following theorem:

Theorem (Approximate Riemann-Roch Theorem).

dimH0(Ω(D)) = max(degD, 0) +O(1).



We’ve already proved the upper bound dimH0O(D)) ≤ degD + 1, and it is obvious that
H0(O(D)) = 0 if degD ≤ 0, so it remains to show that there exist some constant C,
depending only on X, such that dimH0(Ω(D)) > degD−C. Take an embedding X ↪→ PN ,
and let D∞ be the divisor supported on the points of X ∩ {z0 = 0} , where the multiplicity
for each point equals its ramification. Take D = tD∞, we have the following fact:

dimH0(Ω(tD∞)) > t degD∞ − C,
for some constant C independent of t. This is because any inhomogeneous polynomial of
degree t in x1

x0
, · · · , xN

x0
lies in H0(Ω(tD∞)), and

dimH0(Ω(tD∞)) > hfunc(t)

= hpoly(t) (for t� 0)

= t degX − C
= t degD∞ − C.

Remark. Another way to think about Riemann-Roch is that it provides the constant term
for the Hilbert polynomial, i.e. hpoly(t) = (degX)t− g + 1.

We have the following corollary:

Corollary. There exist a constant C3 such that any divisor D is rationally equivalent to a
divisor of the form tD∞ + E, where ∑

x∈X

|E(x)| ≤ C3.

Now we can prove the Approximate Riemann-Roch Theorem as follows:

Proof. Let D be rationally equivalent to tD∞ + E as above, we have:

H0(Ω(D)) ∼= H0(Ω(tD∞ + E).

Then it gives:

dimH0(Ω(tD∞ + E) > dimH0(Ω(tD∞))−
∑
x∈X

max(−E(x), 0)

> t degD∞ − C2 − C3

> degD − C4.

�

December 3
Announcements: The Baby Student Algebraic Geometry Seminar will be 5-6pm on Mon-

days next semester, organized by Francesca, in room 4096 of East Hall.

Definition. For W ⊂ X, then O(D)W = {f ∈ Frac(X) : vx(f) +D(X) ≥ 0, x ∈ W}}.

For example, if W = X, O(D)X = H0(O(D)). Notice that OW = O(0)W . We define
Ω(D)W similarly.

Suppose X = U∪V with U, V nonempty open sets neither of which is X. Then H0(O(D))
is the kernel of the map O(D)U ⊕O(D)V → O(D)U∩V where (f, g) 7→ f − g.



Then we have the exact sequence

0→ H0(O(D))→ O(D)U ⊕O(D)V → O(D)U∩V

which we can extend by defining H1(O(D);U, V ) to be the cokernel of the map O(D)U ⊕
O(D)V → O(D)U∩V so that

0→ H0(O(D))→ O(D)U ⊕O(D)V → O(D)U∩V → H1(O(D);U, V )→ 0

is exact.
We want to show that this does not depend on the choice of open sets U, V , so we introduce

the following claim:

Proposition. Let q ∈ U ∩ V . Then H1(O(D);U, V ) ∼= H1(O(D);U, V \ {q}).

Proof Sketch. We consider the following commutative diagram, with exact rows, and apply
the Snake lemma:

0 // O(D)U ⊕O(D)V //

��

O(D)U ⊕O(D)V \{q} //

��

O(D)V \{q}/O(D)V //

∼=
��

0

0 // O(D)U∩V // O(D)U ′∩V // O(D)(U∩V )\{q}/O(D)U∩V // 0

Then by the snake lemma, we have that

0→ H0(O(D))→ H0(O(D))→ 0→ H1(O(D);U, V )→ H1(O(D);U ′, V )→ 0→ 0.

is exact and thus these H1 are isomorphic.
�

The point being omitted from the sketch here is why the right vertical map is an iso-
morphism. In the commutative diagram above, if V ⊂ X, which is not empty or X, then
the map O(D)V → O(D)V \q has cokernel isomorphic to Frac(X)/O(D){q} which is the set
of all rational functions on X quotiented by the set of functions vanishing to order greater
than or equal to −D(q) at q. In particular, Frac(X)/O(D){q} is depends only on q, not
on the open set V around it. Identifying the vector spaces in the right hand column with
Frac(X)/O(D){q} in this way, the vertical map is the identity. See the notes for more detail.

We also talked about an alternative definition of cohomology. If we pick finitely many
points z1, . . . , zr ∈ X and let V = X \ {z1, . . . , zr} then we have an exact sequence

0→ H0(O(D))→ O(D)V ⊕
(
⊕iO(D){zi}

)
→ Frac(X)⊕r → H1(O(D))→ 0

where we defineH1(O(D)) to be the cokernel of the mapO(D)V⊕
(
⊕iO(D){zi}

)
→ Frac(X)⊕r

to make the sequence exact. We would need to show that it does not depend on how you
pick the zi. Next term, we will talk about homological algebra, which explain why so many
different maps whose kernel is H0 all have cokerel H1

Back to our previous proposition, we have proved that, using this proposition repeatedly,
we get natural maps H1(O(D);U1, V1)→ H1(O(D);U2, V2) which are isomorphisms for any
two covers, U1, V1 and U2, V2.

December 5



Recall our setting: X is a smooth connected projective curve, and we have an open cover
X = U ∪ V (where U, V 6= ∅, X). Then we have an exact sequence:

0→ H0(Ω(D))→ Ω(D)U ⊕ Ω(D)V → Ω(D)U∩V → H1(Ω(D);U, V )→ 0

and we define H1(Ω(D)) similarly.
An example: let X = P1. We can write P1 = A1∪A1, where the first factor has coordinate

t and the second has coordinate u = t−1. We want to understand ΩU ⊕ ΩV → ΩU∩V . This
is like k[t]dt⊕ k[t−1]dt−1 → k[t, t−1]dt. So the exact sequence looks like:

0→ k[t]dt⊕ t−2k[t−1]dt→ k[t, t−1]dt→ k · dt
t
→ 0

Today: let’s start with a Noether normalization π : X → P1, where X is as before (a
smooth connected projective curve). Let D∞ be the divisior π−1(∞) with multiplicity. If
t � 0, then H1(Ω(tD∞)) = 0. To see this, cover P1 by P1 \ ∞ and P1 \ 0. Write z for
the variable on P1, and call these open sets U, V . We want to understand: Ω(tD∞)U ⊕
Ω(tD∞)V → Ω(tD∞)U∩V . This is like ΩU ⊕ ztΩV → ΩU∩V .

Here, ΩU is a free k[z]-module of rank deg π, ΩV is a free k[z−1]-module of rank deg(π) and
ΩU∩V is a free k[z, z−1]-module of rank deg π. This comes down to the fact that if M,N ⊂
k[z, z−1]⊕r are rank r k[z]- and k[z−1]-submodules respctively, then M + zkN = k[z, z−1]⊕r

for t� 0. So we’ve shown that H1(Ω(tD∞)) = 0.
Now, the “incredibly useful exact sequence”: let D′ = D + p, where D is a divisor and p

a point. We have a long exact sequence

0→ H0(Ω(D))→ H0(Ω(D))→ k → H1(Ω(D))→ H1(Ω(D′))→ 0

The proof is by commutative diagram, and there are three cases (all equally as easy). For
instance, we have the commutative diagram as below and if p ∈ V \ U we get a snake:

0 H0(Ω(D)) H0(Ω(D′)) k

0 Ω(D)U ⊕ Ω(D)V Ω(D′)U ⊕ Ω(D′)V k 0

0 Ω(D)U∩V Ω(D′)U∩V 0

H1(Ω(D)) H1(Ω(D′)) 0

p

f g h

i

Corollary. dimH(D) <∞ for any D.

This follows from the above exact sequence by changing divisors from tD∞ down to D by
removing points. Another corollary is that:

Corollary. If D ⊂ E, then we have a surjection H1(Ω(D))→ H1(Ω(E)).



Notice that this last statement is dual to what we have for H0, suggesting that we should
be on the lookout for some sort of duality. We are in a position to prove:

Theorem (“Homological Riemann-Roch”). There is an integer h so that dimH0(Ω(D)) −
dimH1(Ω(D)) = degD − h+ 1.

This follows immediately from the long exact sequence, since we have dimH0(Ω(D)) −
dimH1(Ω(D′)) = dimH0(Ω(D))− dimH1(Ω(D)) + 1. We’d be done with Riemann-Roch if
we knew dimH0(Ω(D)) = dimH1(Ω(−D)) (or dimH0(Ω(D)) = dimH1(Ω(−D)). For this
we need:

Theorem (Serre duality). There is a perfect pairing H0(Ω(D)) × H1(Ω(−D)) → k (or
H0(Ω(D))×H1(Ω(−D))→ k.

December 8
We recalled the end of the previous class: Let X be a smooth projective connected and

hence irreducible curve. X = U
⋃
V is an open cover with U, V 6= ∅, X.

H1(Ω(D)) := Coker(Ω(D)U ⊕ Ω(D)V → Ω(D)U∩V )

If D′ = D + p, then we have an exact sequence

0 // H0(Ω(D)) // H0(Ω(D′)) // k // H1(Ω(D)) // H1(Ω(D′)) // 0 .

From this we deduce:

dimH0(Ω(D))− dimH1(Ω(D)) = degD − h+ 1

where h = dimH1(Ω). In order to deduce Riemann-Roch from this, we need to know that
dimH0(O(D)) = dimH1(Ω(−D)).

More precisely, we will prove:
Serre duality There is a perfect pairing H1(Ω(D))×H0(Ω(−D))→ k.
Equivalently, there is a pairing H0(Ω(D))×H1(Ω(−D))→ k.
Today, we describe this pairing.
Proposition If ω is a nonzero rational 1−form on X, then

∑
x∈X resxω = 0 where X is a

smooth projective curve.

Proof: Hint: char k = 0, it suffices to prove on P1.Then we build a map
∫

: H1(Ω)→ k,
where H1(Ω) := Coker(ΩU ⊕ ΩV → ΩU∩V ). Let ω ∈ ΩU∩V , then

∫
ω =

∑
x∈X−U resxω.

In general, let f ∈ H0(O(D)), ω ∈ Ω(−D)U∩V , representing a class [ω] in H1(Ω(−D)).
The Serre duality pairing is < f, [ω] >=

∫
fω. This pairing depends only on the class

< f, [ω] >.

December 10
We are ready to finish the proof of Serre duality, and thus of Riemann-Roch. We will need

the following facts from our earlier work on Asymptotic Riemann-Roch:

• If degD is negative, then H0(O(D)) = 0.
• If degD is sufficiently large, then H1(O(D)) = 0.



Our proof is based on chasing commutative diagrams. If D′ = D + p, then we have an
exact sequence

0 // H0(O(D)) // H0(O(D′)) // k // H1(O(D)) // H1(O(D′)) // 0 .

Now, −D = −D′ + p, so we have a second long exact sequence

0 H0(Ω(−D))oo H0(Ω(−D′))oo koo H1(Ω(−D))oo H1(Ω(−D′))oo 0oo

which we can dualize to

0 // H0(Ω(−D))∨ // H0(Ω(−D′))∨ // k // H1(Ω(−D))∨ // H1(Ω(−D′))∨ // 0 .

The Serre pairing gives us vertical maps

0 // H0(O(D)) //

σ

��

H0(O(D′))
α //

σ′

��

k // H1(O(D)) //

��

H1(O(D′)) //

��

0

0 // H0(Ω(−D))∨ // H0(Ω(−D′))∨ β // k // H1(Ω(−D))∨ // H1(Ω(−D′))∨ // 0

.

These form a commutative diagram. We want to prove the vertical maps are isomorphisms.
If degD � 0, then columns 1 and 2 are zero, so σ and σ′ are trivially isomorphisms.
If degD � 0, then columns 4 and 5 are zero, and the third column is an isomorphism, so

Ker(σ) ∼= Ker(σ′) and CoKer(σ) ∼= CoKer(σ′).
So, as D increases from very negative to very positive, the kernel and cokernel of σ start

at 0 and eventually stabilize at some finite dimensional vector space. Of course, we actually
want to show they are 0 for all D.

We split off the left three columns to make a 2 × 3 diagram: The Serre pairing gives us
vertical maps

0 // H0(O(D)) //

σ

��

H0(O(D′))
α //

σ′

��

Im(α) //
� _

��

0

0 // H0(Ω(−D))∨ // H0(Ω(−D′))∨ β // Im(β) // 0

.

Note that Im(α) is literally a subset of Im(β). From the snake lemma, we get

Ker(σ) ∼= Ker(σ′) and CoKer(σ) ⊆ CoKer(σ′).

Using the result on kernels over and over, we deduce that Ker(H0(O(D)) −→ H1(Ω(−D))∨)
is independent of D. It is trivially 0 when degD � 0 (since the two spaces are 0). So the
kernel vanishes for all D.

We now turn to the cokernels. Set

q(D) := CoKer(H0(O(D)) −→ H1(Ω(−D))∨).

What we know so far is that

(1) q(D) = 0 for degD � 0.
(2) If D ≤ E then q(D) ⊆ q(E).
(3) As degD gets large, q(D) stays bounded.

From point (2), it is enough to show that q(tD∞) vanishes for t large, since every D is < tD∞
for t large enough. Let M =

⋃∞
t=0 q(tD∞). From point (3), M is a finite dimensional k-vector

space.



We have a collection of injections:

0

��

0

��

0

��

0

��
0 // H0(O(D∞)) �

� //

��

H0(O(2D∞)) �
� //

��

H0(O(3D∞)) �
� //

��

· · · � � //
⋃∞
t=0H

0(O(tD∞)) = OU

��
0 // H0(O(D∞)) �

� //

��

H0(O(2D∞)) �
� //

��

H0(O(3D∞)) �
� //

��

· · · � � //
⋃∞
t=0H

1(Ω(−tD∞))∨

��
0 // q(D∞) �

� //

��

q(2D∞) �
� //

��

q(3D∞) �
� //

��

· · · � � //
⋃∞
t=0 q(tD∞) = M

��
0 0 0 0

Let U be the affine open X \ π−1(∞). In the rightmost column,
⋃∞
t=0H

0(O(tD∞)) = OU .
When we have finished the proof, we will know that

⋃∞
t=0H

1(Ω(−tD∞))∨ is isomorphic to
OU . We can see directly that

⋃∞
t=0H

1(Ω(−tD∞))∨ is a OU module and that the vertical
map is a map of OU modules.

So M is a OU module which is finite dimensional as a k-vector space. In other words, M
is a torsion module. Let p ∈ OU annihilate M .

Now, run the whole argument again with D∞ replaced by D := D∞ ∪ Z(p). Let N =⋃∞
t=0 q(tD). Since tD∞ ≤ tD, we see that M embeds into N and one can check that this is

a map of OU modules. But N is a OU\Z(p) module and p−1 ∈ OU\Z(p). So p acts by 0 on M ,
and acts invertibly on N . This shows M is zero, concluding the proof.


