Problem Set Two: Due Thursday, February 1

See the course website for policy on collaboration. All references to FOAG refer to the July 31, 2023 edition of Foundations of Algebraic Geometry, by Ravi Vakil.

Problems from the textbook:

14.2.B This exercise is "essential", but it is also straightforward. It tells you that pullbacks of vector bundles are computed in a completely straightforward way.
14.2.D This exercise shows you how to represent dual vector bundles in coordinates. It is a good example to make you do a concrete computation.
14.2.F Tensoring with a locally free sheaf preserves exactness. This comes up all the time.
14.2.H The definition of the Picard group, an important object in algebraic geometry.
14.3.G This exercise shows how to write down a short exact sequence of vector bundles in coordinates. You'll get more practice with it in Problem 2.
Problem 1. As described in Section 14.2 of $F O A G$, to give a vector bundle of rank r on a scheme X is to give an open cover U_{i} of X and transition matrices $T_{i j} \in \operatorname{GL}_{r}\left(\mathcal{O}\left(U_{i} \cap U_{j}\right)\right)$ obeying ${ }^{1]}$ $\left.T_{i k}\right|_{U_{i} \cap U_{j} \cap U_{k}}=\left.\left.T_{j k}\right|_{U_{i} \cap U_{j} \cap U_{k}} \circ T_{i j}\right|_{U_{i} \cap U_{j} \cap U_{k}}$. Let \mathcal{E} and \mathcal{F} be vector bundles of ranks p and q on X. Let U_{i} be an open cover of X on which both \mathcal{E} and \mathcal{F} are trivial, with transition matrices $P_{i j}$ and $Q_{i j}$.
(1) Show that $\operatorname{Hom}(\mathcal{E}, \mathcal{F})$ is isomorphic to the set of collections of matrices $H_{i} \in \operatorname{Mat}_{q \times p}\left(\mathcal{O}\left(U_{i}\right)\right)$ such that $\left.H_{j}\right|_{U_{i} \cap U_{j}} \circ P_{i j}=\left.Q_{i j} \circ H_{i}\right|_{U_{i} \cap U_{j}}$.
(2) Show that $\mathcal{E} \cong \mathcal{F}$ if and only if $p=q$ and there are invertible matrices $G_{i} \in \operatorname{GL}_{p}\left(\mathcal{O}\left(U_{i}\right)\right)$ such that $Q_{i j}=\left.\left.G_{j}\right|_{U_{i} \cap U_{j}} \circ P_{i j} \circ G_{i}^{-1}\right|_{U_{i} \cap U_{j}}$.
Problem 2. In this problem, we work with some basic vector bundles on \mathbb{P}^{1}. Let k be a field. Cover \mathbb{P}^{1} with two open charts: $U=\operatorname{Spec} k[t]$ and $V=\operatorname{Spec} k\left[t^{-1}\right]$, so $U \cap V=\operatorname{Spec} k\left[t, t^{-1}\right]$. The line bundle $\mathcal{O}(n)$ is formed by taking a section σ of \mathcal{O}_{U} and gluing it $t^{-n} \sigma$ in \mathcal{O}_{V}. So the global sections of $\mathcal{O}(n)$ are ordered pairs (f, g) with $f \in k[t]$ and $g \in k\left[t^{-1}\right]$ such that $g=t^{-n} f$. Let x_{1} and x_{2} be the sections $\left(1, t^{-1}\right)$ and $(t, 1)$ of $\mathcal{O}(1)$.
(1) Define $\beta: \mathcal{O}(0)^{\oplus 2}$ to $\mathcal{O}(1)$ by $\left(f_{1}, f_{2}\right) \mapsto f_{1} x_{1}+f_{2} x_{2}$. Show that β is a surjective map of sheaves.
(2) Show that the kernel of β is isomorphic to $\mathcal{O}(-1)$. So we have a short exact sequence $0 \rightarrow \mathcal{O}(-1) \xrightarrow{\alpha} \mathcal{O}^{\oplus 2} \xrightarrow{\beta} \mathcal{O}(1) \rightarrow 0$.
(3) Encode the vector bundles $\mathcal{O}(-1), \mathcal{O}^{\oplus 2}$ and $\mathcal{O}(1)$ with the matrices [$\left.t\right],\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ and $\left[t^{-1}\right]$ respectively. Give the matrices in $\operatorname{Mat}_{1 \times 2}(k[t])$ and $\operatorname{Mat}_{1 \times 2}\left(k\left[t^{-1}\right]\right)$ representing β and the matrices in $\operatorname{Mat}_{2 \times 1}(k[t])$ and $\operatorname{Mat}_{2 \times 1}\left(k\left[t^{-1}\right]\right)$ representing α.
(4) From 14.3.G, there must be a matrix of the form $\left[\begin{array}{cc}t_{0}^{-1} & * \\ 0 & t\end{array}\right]$ representing $\mathcal{O}^{\oplus 2}$. From Problem 1, we should be able to factor

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=G_{1}\left[\begin{array}{cc}
t^{-1} & * \\
0 & t
\end{array}\right] G_{2}^{-1}
$$

for $G_{1} \in \mathrm{GL}_{2}(k[t])$ and $G_{2} \in \mathrm{GL}_{2}\left(k\left[t^{-1}\right]\right)$. Give the matrices $\left[\begin{array}{cc}t^{-1} & * \\ 0 & t\end{array}\right], G_{1}$ and G_{2}.

[^0]
[^0]: ${ }^{1}$ If I were writing the book, I would switch the order of the subscripts in $T_{i j}$, but I will follow the book.

