PROBLEM SET 1 DUE TUESDAY, JANUARY 18

0 Which of the following have you seen before: smooth manifolds, differential forms, analytic functions, residues (of meromorphic functions), (p,q)-forms, line bundles, vector bundles, cohomology (of topological spaces), sheaves, schemes, exact sequences, cohomology (of complexes of abelian groups), the snake lemma, derived functors?

DIFFERENTIAL FORMS

- **1** Let f(x,y) be any smooth function from $\mathbb{R}^2 \to \mathbb{R}$. Show that there is a 1-form $\omega = g(x,y)dx + h(x,y)dy$ such that $d\omega = f(x,y)dxdy$.
 - **2** Let ϕ be a smooth map $\mathbb{R}^n \to \mathbb{R}^n$. What is $\phi^*(dx_1 \wedge dx_2 \wedge \cdots \wedge dx_n)$?
 - **3** On $\mathbb{R}^2 \setminus (0,0)$, let ω be the differential form $(xdy ydx)/(x^2 + y^2)$.
 - (1) Show that $d\omega = 0$.
 - (2) Let p be the map $t \mapsto (\cos t, \sin t)$ from $[0,1] \to \mathbb{R}^2 \setminus (0,0)$. What is $p^*\omega$?
 - (3) Let q be the map $t \mapsto (t+1,t+1)$ from $[0,1] \to \mathbb{R}^2 \setminus (0,0)$. What is $q^*\omega$?
 - (4) Let γ be any arc in $\mathbb{R}^2 \setminus (0,0)$. Give (with proof) a simple description of $\int_{\gamma} \omega$.

SHEAVES

- 4 Which of the following presheaves are sheaves? For those which are not sheaves, is the failure that the elements of $\mathcal{E}(U)$ we want do not exist, or that they are not unique?
 - (1) On X a smooth manifold, the presheaf where $\mathcal{E}(U)$ is the C^{∞} functions on U?
 - (2) The constant presheaf: $\mathcal{E}(U) = \mathbb{Z}$ for every U?
 - (3) On $X = \mathbb{C}$, the presheaf of \mathbb{C}^* valued functions with continuous logarithms?
 - (4) For a X a smooth manifold and Z a smooth submanifold, the presheaf where $\mathcal{E}(U)$ is C^{∞} functions on $U \cap Z$. (Note: The unique function $\emptyset \to \mathbb{R}$ is smooth.)
 - (5) Let X and Y be smooth manifolds and $f: X \to Y$ a covering map. The presheaf on X where $\mathcal{E}(U) = C^{\infty}(f(U))$.
 - (6) The presheaf of isomorphism classes of line bundles: $\mathcal{E}(U)$ is the set of isomorphism classes of real line bundles over U, and ρ_V^U is restriction of line bundles. (Do this one only if you know what line bundles are.)
 - (7) The presheaf of cochains: Let Δ be the k-dimensional simplex and let $[\Delta, U]$ be the set of continuous maps $\Delta \to U$. Set $\mathcal{E}(U)$ to be \mathbb{R} valued functions on $[\Delta, U]$. Here ρ_V^U is restriction, noting the obvious inclusion $[\Delta, V] \subset [\Delta, U]$.
- **5** The point of this exercise is to verify some claims made in class. Let \mathcal{E} and \mathcal{F} be sheaves on X and $\phi: \mathcal{E} \to \mathcal{F}$ a map of sheaves.
 - (1) In class, I discussed a presheaf $\mathcal{K}er$ defined on X by $\mathcal{K}er(U) = \{e \in \mathcal{E}(U) : \phi(e) = 0\}$. For $V \subseteq U$, what should the restriction map $\mathcal{K}er(U) \to \mathcal{K}er(V)$ be?
 - (2) Is $Ker(\phi)$ a sheaf?
 - (3) Let the presheaf Coker be such that $Coker(U) = \mathcal{F}(U)/\phi(\mathcal{E}(U))$. What should the restriction map $Coker(U) \to Coker(V)$ be? Check that it is well defined!
 - (4) Is Coker a sheaf? Why or why not?