PROBLEM SET 10 **DUE APRIL 5, 2011**

- 1. Let $X = \mathbb{C}^2/\mathbb{Z}^4$ with the standard Kähler structure. So the harmonic forms are the 16 forms which can be made by wedging together dz_1 , $d\overline{z_1}$, dz_2 and $d\overline{z_2}$ in all possible ways.
 - (1) Find a basis for the primitive part of $H^{1,1}$.
 - (2) How does * act on $\hat{H}^{2,0}$, on the primitive part of $H^{1,1}$, on $H^{0,2}$, and on ω ? In each case, your answer should be either 1 or -1.
- **2.** Let X_1 and X_2 be compact curves of genus g_1 and g_2 . Then we have a Kummer-like formula $H^{p,q}(X \times Y) = \bigoplus_{p_1+p_2=p} \bigoplus_{q_1+q_2=q} H^{p_1,q_1}(X_1) \otimes H^{p_2,q_2}(X_2).$
 - (1) Draw the Hodge diamond for $X \times Y$.
 - (2) Compute the dimensions of all the groups in the Lefschetz decomposition of $H^{\bullet,\bullet}(X_1 \times X_2)$.
 - (3) What is the signature of the Hermitian pairing $\langle \alpha, \beta \rangle = \int_X \alpha \wedge \overline{\beta}$ on $H^2(X \times Y, \mathbb{C})$? On which spaces is it positive definite, and on which is it negative definite?
- **3.** The point of this exercise is to show that, for X compact Kähler, the image of $H^1(X,\mathbb{Z})$ in $H^1(X,\mathcal{O})$ is a discrete lattice.

Let H be a free abelian group of rank 2b, with generators h_1, h_2, \ldots, h_{2b} . Let V be the vector space $H \otimes \mathbb{C}$; note that V comes equipped with an operation of complex conjugation. Suppose that we are given a decomposition $V \cong V^{1,0} \oplus V^{0,1}$, such that $V^{0,1}$ is the complex conjugate of $V^{1,0}$. Let $h_i = (x_i, y_i)$ be the image of h_i in the direct sum decomposition.

- (1) Show that $y_i = \overline{x_i}$.
- (2) Show that there is no nontrivial linear relation $\sum a_i x_i = 0$ with the a_i real.
- **4.** Let Λ be the additive subgroup of \mathbb{C}^2 generated by the vectors $(p_1,q_1), (p_2,q_2), (p_3,q_3)$ and (p_4, q_4) ; assume that Λ is discrete. Let $X = \mathbb{C}^2/\Lambda$.
 - (1) Describe an explicit basis $(\sigma_1, \sigma_2, \sigma_3, \sigma_4, \sigma_5, \sigma_6)$ for $H_2(X, \mathbb{Z})$. We will write σ_i^* for the dual basis of $H^2(X,\mathbb{Z})$.
 - (2) Describe a generator ω for $H^{0,2}(X)$.
 - (3) Compute the 6 integrals $\int_{\sigma_i} \omega$. If you made good choices, this should not be time consuming.

 - (4) Let $\sum a_i \sigma_i^*$ be an element of $H^2(X,\mathbb{Z})$. What is its image in $H^{0,2}(X)$, as a multiple of ω ? (5) Exhibit a choice of (p_i, q_i) so that the map $H^2(X, \mathbb{Z}) \to H^{2,0}(X)$ is injective. (This requires some number theory.)
- **5.** Let X be a compact Kähler manifold. Suppose that we know the operator $L: H^k(X) \to \mathbb{R}$ $H^{k+2}(X)$. The point of this exercise is to see how Λ may be recovered from L.
 - (1) Give a description of the primitive cohomology in terms of L, without mentioning Λ or *.
 - (2) Show that, given the operator L, there is a unique operator $\Lambda: H^{k+2}(X) \to H^k(X)$ obeying $[\Lambda, L] = (n-k) \text{Id.}$ (Hint: build Λ separately on primitive cohomology and on Im L.)
 - (3) Show that, if L takes $H^{\bullet}(X,\mathbb{Q})$ to $H^{\bullet}(X,\mathbb{Q})$, then so do Λ and \dagger .
 - (4) Let $X = \mathbb{C}/A$, for A a discrete rank two subgroup of \mathbb{C} , where \mathbb{C} has the standard Kähler structure. Give a choice of A such that L takes $H^{\bullet}(X,\mathbb{Q})$ to itself but * does not.