
PROBLEM SET 12

DUE APRIL 19, 2011

This problem set is probably a bit too long. Choose the four problems you’d most like to write
up.

1 The point of this problem is to work out how connections work on tensor products. Let E and
F be two vector bundles over a smooth manifold X, and let ∇E and ∇F be connections on them.

(1) Define ∇E⊗F : E ⊗ F → E ⊗ F ⊗ Ω1
X by ∇E⊗F (σ ⊗ τ) = ∇E(σ) ⊗ τ + σ ⊗∇F (τ). Show

that, for any f ∈ C∞X, this formula gives the same result on (fσ)⊗ τ and on σ⊗ (fτ), so
it is a well defined connection.

(2) Let 〈 , 〉E and 〈 , 〉F be bilinear forms on E and on F . Define a bilinear form 〈 , 〉E⊗F by

〈σ1 ⊗ τ1, σ2 ⊗ τ2〉E⊗F = 〈σ1, σ2〉〈τ1, τ2〉
and extending linearly. Show that, if ∇E and ∇F preserve 〈 , 〉E and 〈 , 〉F , then ∇E⊗F
preserves 〈 , 〉E⊗F . (See Problem Set 6, Problem 2 for the notion of a connection preserving
a bilinear form.)

(3) Let X be a complex manifold; let E and F be holomorphic vector bundles; let DE and DF

be the corresponding (0, 1)-connections. Define DE⊗F analogously to how we defined ∇E⊗F
above. Show that, if σ and τ are holomorphic sections of E and F , then DE⊗F (σ⊗ τ) = 0.
This checks that DE⊗F is the (0, 1) connection for the holomorphic structure on E ⊗ F .

2. Let X be a compact Kähler manifold. Let L be a holomorphic line bundle on X, equipped
with an inner product 〈 , 〉. Let ∇ = D + D be the corresponding connection, and let Θ be the
curvature: The closed (1, 1)-form such that ∇2σ = σΘ for any section σ.

(1) Check that Θ is purely imaginary, meaning that it assigns an imaginary number to any pair
of real tangent vectors. (Look at the formula for Θ from the April 7 lecture.)

(2) Replace the metric 〈 , 〉 by eβ〈 , 〉 where β is some real valued function. Let Θ′ be the
corresponding curvature. What is the relation between Θ, Θ′ and β?

(3) Suppose that we are given a closed (1, 1)-form Θ′ such that Θ and Θ′ represent the same
class in H2(X). Show that there is a complex valued function β such that Θ, Θ′ and β
obey the relation you found in the previous part.

(4) Suppose that Θ′ is as in the previous problem, and is purely imaginary. Let β be the
function found in the previous part, such that (Θ,Θ′, β) obeys the relation from part (2).
Show that (Θ,Θ′,Re(β)) also obeys the relation from part (2).

Remark: We have now shown a lemma we will need in class: If X is compact Kähler, L
is a holomorphic line bundle, and Θ′ is a purely imaginary closed (1, 1)-form representing the
cohomology class of L, then there is a metric on L such that the connection has curvature Θ′.

3. The goal of this problem is to compute the various Hodge groups for the projective plane P2.
We write (x1 : x2 : x3) for the homogenous coordinates on P2.

Let U1, U2, U3 be the open sets on which x1, x2 and x3 are nonzero. So U3
∼= C2, with the

isomorphism given by the coordinates x1/x3 and x2/x3, and likewise for the other two charts.

(1) Write down the Čech complex for O with respect to the cover U•. (For example, O(U3)
is everywhere convergent power series in x1/x3 and x2/x3.) Verify that H0(O) ∼= C and
H1(O) = H2(O) = 0.



(2) Let ηij = d(xi/xj), this is a meromorphic (1, 0) form. For (i, j) equal to (1, 2), (2, 1), (3, 1)
and (1, 3), find meromorphic functions aij and bij such that ηij = aijη13 + bijη23.

(3) Write down the Čech complex for H1 with respect to the cover U•. Describe each term as
“the space of forms aη13 + bη23 where a and b are of the form . . . ”.

(4) Write down the Čech complex for H2 with respect to the cover U•. Describe each term as
“the space of forms a(η13 ∧ η23) where a is of the form . . . ”.

(5) Compute that H0(H2) = 0, H1(H2) = 0 and H2(H2) ∼= C.
(6) Compute that H0(H1) = 0, H1(H1) ∼= C and H2(H1) = 0.

Remark: The ordering of (3)-(6) are meant to be in order of difficulty.

4. (The Hilbert polynomial) Let X be a smooth d-dimensional complex submanifold of PM .
Let ω be the restriction of the Fubini-Study form from PM . Bertini’s theorem states that there is
a hyperplane H such that X ∩H is smooth; assume this in this problem.

(1) Let H be a hyperplane such that X ∩H is smooth. On X, show that we have a short exact
sequence of sheaves:

0→ O(N − 1)|X → O(N)|X → O(N)|X∩H → 0.

(2) Show that, for N sufficiently large, we have dimH0(X,O(N)) − dimH0(X,O(N − 1)) =
dimH0(X ∩H,O(N)).

(3) Show that there is a polynomial hX dependent on X such that, for N sufficiently large, we
have dimH0(X,O(N)) = hx(N). (Hint: Induction on d.)

(4) Show that hX has degree d.
(5) Show that the leading term of hX is

∫
X ω

dNd/d!.

5. Let X be a compact1 complex manifold and D a smooth hypersurface. In the past two
lectures, we have seen that (1) D gives rise to a line bundle O(−D) and (2) give a metric on O(D),
we get a closed (1, 1) form on X. Choose U to be an open set containing D. Our goal in this
problem is to show that we can take ω to be 0 on X \ U .

The first part is a partition of unity argument.

(1) Show that there is a finite open cover
⋃
Vi ∪W of X such that (a) each Vi is in U , (b) In

each Vi, the divisor D is cut out by some holomorphic function zi and (c) the closure W of
W is disjoint from D.

(2) Let 1 =
∑
ρi + σ be a partition of unity subject to the cover

⋃
Vi ∪W (So ρi is a function

on Vi, and σ is on W . Recall that the functions in a partition of unity are nonnegative.)
Set δ =

∑
ρi|zi|+ σ. Show that δ|D = 0 and δ|X\U = 1.

(3) Let V be an open set meeting D and w is a holomorphic function on V vanishing on D.
Show that |w|/δ extends to a continuous nonnegative function on V . Show that, if w
vanishes to first order on D and nowhere else, then |w|/δ is strictly positive.

Now we start working with line bundles. If the partitions of unity were painful to you, you might
want to start here:

(4) Define a map of sheaves O(−D) → LCR by N : w 7→ |w|/δ. Show that, if w1(x) = w2(x)
for some point x ∈ D and some sections w1 and w2 of O(−D) defined near x , then
N(w1)(x) = N(w2)(x). So N is a norm on the line bundle O(−D).

(5) For this norm, what is ω? Recall that, if w is any holomorphic section, then 1
2πi∂∂ logN(w)2.

(6) In particular, check that ω is supported on U .

1I am making X compact for simplicity. In fact, this works for any complex manifold – you just need to be careful
to use locally finite covers instead of finite ones.


