PROBLEM SET 12 DUE APRIL 19, 2011

This problem set is probably a bit too long. Choose the four problems you'd most like to write up.

1 The point of this problem is to work out how connections work on tensor products. Let E and F be two vector bundles over a smooth manifold X, and let ∇_E and ∇_F be connections on them.

- (1) Define $\nabla_{E\otimes F}: E\otimes F\to E\otimes F\otimes \Omega^1_X$ by $\nabla_{E\otimes F}(\sigma\otimes \tau)=\nabla_E(\sigma)\otimes \tau+\sigma\otimes \nabla_F(\tau)$. Show that, for any $f\in C^\infty X$, this formula gives the same result on $(f\sigma)\otimes \tau$ and on $\sigma\otimes (f\tau)$, so it is a well defined connection.
- (2) Let $\langle \; , \; \rangle_E$ and $\langle \; , \; \rangle_F$ be bilinear forms on E and on F. Define a bilinear form $\langle \; , \; \rangle_{E\otimes F}$ by $\langle \sigma_1 \otimes \tau_1, \sigma_2 \otimes \tau_2 \rangle_{E\otimes F} = \langle \sigma_1, \sigma_2 \rangle \langle \tau_1, \tau_2 \rangle$
 - and extending linearly. Show that, if ∇_E and ∇_F preserve \langle , \rangle_E and \langle , \rangle_F , then $\nabla_{E\otimes F}$ preserves $\langle , \rangle_{E\otimes F}$. (See Problem Set 6, Problem 2 for the notion of a connection preserving a bilinear form.)
- (3) Let X be a complex manifold; let E and F be holomorphic vector bundles; let \overline{D}_E and \overline{D}_F be the corresponding (0,1)-connections. Define $\overline{D}_{E\otimes F}$ analogously to how we defined $\nabla_{E\otimes F}$ above. Show that, if σ and τ are holomorphic sections of E and F, then $\overline{D}_{E\otimes F}(\sigma\otimes\tau)=0$. This checks that $\overline{D}_{E\otimes F}$ is the (0,1) connection for the holomorphic structure on $E\otimes F$.
- **2.** Let X be a compact Kähler manifold. Let L be a holomorphic line bundle on X, equipped with an inner product \langle , \rangle . Let $\nabla = D + \overline{D}$ be the corresponding connection, and let Θ be the curvature: The closed (1,1)-form such that $\nabla^2 \sigma = \sigma \Theta$ for any section σ .
 - (1) Check that Θ is purely imaginary, meaning that it assigns an imaginary number to any pair of real tangent vectors. (Look at the formula for Θ from the April 7 lecture.)
 - (2) Replace the metric $\langle \ , \ \rangle$ by $e^{\beta} \langle \ , \ \rangle$ where β is some real valued function. Let Θ' be the corresponding curvature. What is the relation between Θ , Θ' and β ?
 - (3) Suppose that we are given a closed (1,1)-form Θ' such that Θ and Θ' represent the same class in $H^2(X)$. Show that there is a complex valued function β such that Θ , Θ' and β obey the relation you found in the previous part.
 - (4) Suppose that Θ' is as in the previous problem, and is purely imaginary. Let β be the function found in the previous part, such that (Θ, Θ', β) obeys the relation from part (2). Show that $(\Theta, \Theta', \text{Re}(\beta))$ also obeys the relation from part (2).

Remark: We have now shown a lemma we will need in class: If X is compact Kähler, L is a holomorphic line bundle, and Θ' is a purely imaginary closed (1,1)-form representing the cohomology class of L, then there is a metric on L such that the connection has curvature Θ' .

3. The goal of this problem is to compute the various Hodge groups for the projective plane \mathbb{P}^2 . We write $(x_1:x_2:x_3)$ for the homogenous coordinates on \mathbb{P}^2 .

Let U_1 , U_2 , U_3 be the open sets on which x_1 , x_2 and x_3 are nonzero. So $U_3 \cong \mathbb{C}^2$, with the isomorphism given by the coordinates x_1/x_3 and x_2/x_3 , and likewise for the other two charts.

(1) Write down the Čech complex for \mathcal{O} with respect to the cover U_{\bullet} . (For example, $\mathcal{O}(U_3)$ is everywhere convergent power series in x_1/x_3 and x_2/x_3 .) Verify that $H^0(\mathcal{O}) \cong \mathbb{C}$ and $H^1(\mathcal{O}) = H^2(\mathcal{O}) = 0$.

- (2) Let $\eta_{ij} = d(x_i/x_j)$, this is a meromorphic (1,0) form. For (i,j) equal to (1,2), (2,1), (3,1) and (1,3), find meromorphic functions a_{ij} and b_{ij} such that $\eta_{ij} = a_{ij}\eta_{13} + b_{ij}\eta_{23}$.
- (3) Write down the Čech complex for \mathcal{H}^1 with respect to the cover U_{\bullet} . Describe each term as "the space of forms $a\eta_{13} + b\eta_{23}$ where a and b are of the form ...".
- (4) Write down the Čech complex for \mathcal{H}^2 with respect to the cover U_{\bullet} . Describe each term as "the space of forms $a(\eta_{13} \wedge \eta_{23})$ where a is of the form ...".
- (5) Compute that $H^0(\mathcal{H}^2) = 0$, $H^1(\mathcal{H}^2) = 0$ and $H^2(\mathcal{H}^2) \cong \mathbb{C}$.
- (6) Compute that $H^0(\mathcal{H}^1) = 0$, $H^1(\mathcal{H}^1) \cong \mathbb{C}$ and $H^2(\mathcal{H}^1) = 0$.

Remark: The ordering of (3)-(6) are meant to be in order of difficulty.

- **4.** (The Hilbert polynomial) Let X be a smooth d-dimensional complex submanifold of \mathbb{P}^M . Let ω be the restriction of the Fubini-Study form from \mathbb{P}^M . Bertini's theorem states that there is a hyperplane H such that $X \cap H$ is smooth; assume this in this problem.
 - (1) Let H be a hyperplane such that $X \cap H$ is smooth. On X, show that we have a short exact sequence of sheaves:

$$0 \to \mathcal{O}(N-1)|_X \to \mathcal{O}(N)|_X \to \mathcal{O}(N)|_{X \cap H} \to 0.$$

- (2) Show that, for N sufficiently large, we have $\dim H^0(X, \mathcal{O}(N)) \dim H^0(X, \mathcal{O}(N-1)) = \dim H^0(X \cap H, \mathcal{O}(N))$.
- (3) Show that there is a polynomial h_X dependent on X such that, for N sufficiently large, we have dim $H^0(X, \mathcal{O}(N)) = h_x(N)$. (Hint: Induction on d.)
- (4) Show that h_X has degree d.
- (5) Show that the leading term of h_X is $\int_X \omega^d N^d/d!$.
- **5.** Let X be a compact¹ complex manifold and D a smooth hypersurface. In the past two lectures, we have seen that (1) D gives rise to a line bundle $\mathcal{O}(-D)$ and (2) give a metric on $\mathcal{O}(D)$, we get a closed (1,1) form on X. Choose U to be an open set containing D. Our goal in this problem is to show that we can take ω to be 0 on $X \setminus U$.

The first part is a partition of unity argument.

- (1) Show that there is a finite open cover $\bigcup V_i \cup W$ of X such that (a) each V_i is in U, (b) In each V_i , the divisor D is cut out by some holomorphic function z_i and (c) the closure \overline{W} of W is disjoint from D.
- (2) Let $1 = \sum \rho_i + \sigma$ be a partition of unity subject to the cover $\bigcup V_i \cup W$ (So ρ_i is a function on V_i , and σ is on W. Recall that the functions in a partition of unity are nonnegative.) Set $\delta = \sum \rho_i |z_i| + \sigma$. Show that $\delta|_D = 0$ and $\delta|_{X \setminus U} = 1$.
- (3) Let V be an open set meeting D and w is a holomorphic function on V vanishing on D. Show that $|w|/\delta$ extends to a continuous nonnegative function on V. Show that, if w vanishes to first order on D and nowhere else, then $|w|/\delta$ is strictly positive.

Now we start working with line bundles. If the partitions of unity were painful to you, you might want to start here:

- (4) Define a map of sheaves $\mathcal{O}(-D) \to LC_{\mathbb{R}}$ by $N: w \mapsto |w|/\delta$. Show that, if $w_1(x) = w_2(x)$ for some point $x \in D$ and some sections w_1 and w_2 of $\mathcal{O}(-D)$ defined near x, then $N(w_1)(x) = N(w_2)(x)$. So N is a norm on the line bundle $\mathcal{O}(-D)$.
- (5) For this norm, what is ω ? Recall that, if w is any holomorphic section, then $\frac{1}{2\pi i}\partial \overline{\partial} \log N(w)^2$.
- (6) In particular, check that ω is supported on U.

 $^{^{1}}$ I am making X compact for simplicity. In fact, this works for any complex manifold – you just need to be careful to use locally finite covers instead of finite ones.